|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: strandmark@google.com (Petter Strandmark) | 
|  |  | 
|  | #include "ceres/gradient_problem_solver.h" | 
|  |  | 
|  | #include "ceres/gradient_problem.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | // Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function . | 
|  | class Rosenbrock : public ceres::FirstOrderFunction { | 
|  | public: | 
|  | bool Evaluate(const double* parameters, | 
|  | double* cost, | 
|  | double* gradient) const final { | 
|  | const double x = parameters[0]; | 
|  | const double y = parameters[1]; | 
|  |  | 
|  | cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
|  | if (gradient != nullptr) { | 
|  | gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; | 
|  | gradient[1] = 200.0 * (y - x * x); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int NumParameters() const final { return 2; } | 
|  | }; | 
|  |  | 
|  | TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) { | 
|  | const double expected_tolerance = 1e-9; | 
|  | double parameters[2] = {-1.2, 0.0}; | 
|  |  | 
|  | ceres::GradientProblemSolver::Options options; | 
|  | ceres::GradientProblemSolver::Summary summary; | 
|  | ceres::GradientProblem problem(new Rosenbrock()); | 
|  | ceres::Solve(options, problem, parameters, &summary); | 
|  |  | 
|  | EXPECT_EQ(CONVERGENCE, summary.termination_type); | 
|  | EXPECT_NEAR(1.0, parameters[0], expected_tolerance); | 
|  | EXPECT_NEAR(1.0, parameters[1], expected_tolerance); | 
|  | } | 
|  |  | 
|  | class QuadraticFunction : public ceres::FirstOrderFunction { | 
|  | bool Evaluate(const double* parameters, | 
|  | double* cost, | 
|  | double* gradient) const final { | 
|  | const double x = parameters[0]; | 
|  | *cost = 0.5 * (5.0 - x) * (5.0 - x); | 
|  | if (gradient != nullptr) { | 
|  | gradient[0] = x - 5.0; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | int NumParameters() const final { return 1; } | 
|  | }; | 
|  |  | 
|  | struct RememberingCallback : public IterationCallback { | 
|  | explicit RememberingCallback(double* x) : calls(0), x(x) {} | 
|  | CallbackReturnType operator()(const IterationSummary& summary) final { | 
|  | x_values.push_back(*x); | 
|  | return SOLVER_CONTINUE; | 
|  | } | 
|  | int calls; | 
|  | double* x; | 
|  | std::vector<double> x_values; | 
|  | }; | 
|  |  | 
|  | TEST(Solver, UpdateStateEveryIterationOption) { | 
|  | double x = 50.0; | 
|  | const double original_x = x; | 
|  |  | 
|  | ceres::GradientProblem problem(new QuadraticFunction); | 
|  | ceres::GradientProblemSolver::Options options; | 
|  | RememberingCallback callback(&x); | 
|  | options.callbacks.push_back(&callback); | 
|  | ceres::GradientProblemSolver::Summary summary; | 
|  |  | 
|  | int num_iterations; | 
|  |  | 
|  | // First try: no updating. | 
|  | ceres::Solve(options, problem, &x, &summary); | 
|  | num_iterations = summary.iterations.size() - 1; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | for (double value : callback.x_values) { | 
|  | EXPECT_EQ(50.0, value); | 
|  | } | 
|  |  | 
|  | // Second try: with updating | 
|  | x = 50.0; | 
|  | options.update_state_every_iteration = true; | 
|  | callback.x_values.clear(); | 
|  | ceres::Solve(options, problem, &x, &summary); | 
|  | num_iterations = summary.iterations.size() - 1; | 
|  | EXPECT_GT(num_iterations, 1); | 
|  | EXPECT_EQ(original_x, callback.x_values[0]); | 
|  | EXPECT_NE(original_x, callback.x_values[1]); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |