| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2013 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // mierle@gmail.com (Keir Mierle) |
| // |
| // Finite differencing routine used by NumericDiffCostFunction. |
| |
| #ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |
| #define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |
| |
| #include <cstring> |
| #include <glog/logging.h> |
| #include "Eigen/Dense" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/cost_function.h" |
| #include "ceres/internal/variadic_evaluate.h" |
| #include "ceres/types.h" |
| #include "ceres/cost_function.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // Helper templates that allow evaluation of a variadic functor or a |
| // CostFunction object. |
| template <typename CostFunctor, |
| int N0, int N1, int N2, int N3, int N4, |
| int N5, int N6, int N7, int N8, int N9 > |
| bool EvaluateImpl(const CostFunctor* functor, |
| double const* const* parameters, |
| double* residuals, |
| const void* /* NOT USED */) { |
| return VariadicEvaluate<CostFunctor, |
| double, |
| N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call( |
| *functor, |
| parameters, |
| residuals); |
| } |
| |
| template <typename CostFunctor, |
| int N0, int N1, int N2, int N3, int N4, |
| int N5, int N6, int N7, int N8, int N9 > |
| bool EvaluateImpl(const CostFunctor* functor, |
| double const* const* parameters, |
| double* residuals, |
| const CostFunction* /* NOT USED */) { |
| return functor->Evaluate(parameters, residuals, NULL); |
| } |
| |
| // This is split from the main class because C++ doesn't allow partial template |
| // specializations for member functions. The alternative is to repeat the main |
| // class for differing numbers of parameters, which is also unfortunate. |
| template <typename CostFunctor, |
| NumericDiffMethod kMethod, |
| int kNumResiduals, |
| int N0, int N1, int N2, int N3, int N4, |
| int N5, int N6, int N7, int N8, int N9, |
| int kParameterBlock, |
| int kParameterBlockSize> |
| struct NumericDiff { |
| // Mutates parameters but must restore them before return. |
| static bool EvaluateJacobianForParameterBlock( |
| const CostFunctor* functor, |
| double const* residuals_at_eval_point, |
| const double relative_step_size, |
| double **parameters, |
| double *jacobian) { |
| using Eigen::Map; |
| using Eigen::Matrix; |
| using Eigen::RowMajor; |
| using Eigen::ColMajor; |
| |
| typedef Matrix<double, kNumResiduals, 1> ResidualVector; |
| typedef Matrix<double, kParameterBlockSize, 1> ParameterVector; |
| typedef Matrix<double, kNumResiduals, kParameterBlockSize, |
| (kParameterBlockSize == 1 && |
| kNumResiduals > 1) ? ColMajor : RowMajor> JacobianMatrix; |
| |
| |
| Map<JacobianMatrix> parameter_jacobian(jacobian, |
| kNumResiduals, |
| kParameterBlockSize); |
| |
| // Mutate 1 element at a time and then restore. |
| Map<ParameterVector> x_plus_delta(parameters[kParameterBlock], |
| kParameterBlockSize); |
| ParameterVector x(x_plus_delta); |
| ParameterVector step_size = x.array().abs() * relative_step_size; |
| |
| // To handle cases where a parameter is exactly zero, instead use |
| // the mean step_size for the other dimensions. If all the |
| // parameters are zero, there's no good answer. Take |
| // relative_step_size as a guess and hope for the best. |
| const double fallback_step_size = |
| (step_size.sum() == 0) |
| ? relative_step_size |
| : step_size.sum() / step_size.rows(); |
| |
| // For each parameter in the parameter block, use finite differences to |
| // compute the derivative for that parameter. |
| for (int j = 0; j < kParameterBlockSize; ++j) { |
| const double delta = |
| (step_size(j) == 0.0) ? fallback_step_size : step_size(j); |
| |
| x_plus_delta(j) = x(j) + delta; |
| |
| double residuals[kNumResiduals]; // NOLINT |
| |
| if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>( |
| functor, parameters, residuals, functor)) { |
| return false; |
| } |
| |
| // Compute this column of the jacobian in 3 steps: |
| // 1. Store residuals for the forward part. |
| // 2. Subtract residuals for the backward (or 0) part. |
| // 3. Divide out the run. |
| parameter_jacobian.col(j) = |
| Map<const ResidualVector>(residuals, kNumResiduals); |
| |
| double one_over_delta = 1.0 / delta; |
| if (kMethod == CENTRAL) { |
| // Compute the function on the other side of x(j). |
| x_plus_delta(j) = x(j) - delta; |
| |
| if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>( |
| functor, parameters, residuals, functor)) { |
| return false; |
| } |
| |
| parameter_jacobian.col(j) -= |
| Map<ResidualVector>(residuals, kNumResiduals, 1); |
| one_over_delta /= 2; |
| } else { |
| // Forward difference only; reuse existing residuals evaluation. |
| parameter_jacobian.col(j) -= |
| Map<const ResidualVector>(residuals_at_eval_point, kNumResiduals); |
| } |
| x_plus_delta(j) = x(j); // Restore x_plus_delta. |
| |
| // Divide out the run to get slope. |
| parameter_jacobian.col(j) *= one_over_delta; |
| } |
| return true; |
| } |
| }; |
| |
| template <typename CostFunctor, |
| NumericDiffMethod kMethod, |
| int kNumResiduals, |
| int N0, int N1, int N2, int N3, int N4, |
| int N5, int N6, int N7, int N8, int N9, |
| int kParameterBlock> |
| struct NumericDiff<CostFunctor, kMethod, kNumResiduals, |
| N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, |
| kParameterBlock, 0> { |
| // Mutates parameters but must restore them before return. |
| static bool EvaluateJacobianForParameterBlock( |
| const CostFunctor* functor, |
| double const* residuals_at_eval_point, |
| const double relative_step_size, |
| double **parameters, |
| double *jacobian) { |
| LOG(FATAL) << "Control should never reach here."; |
| return true; |
| } |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |