| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2013 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | //         mierle@gmail.com (Keir Mierle) | 
 | // | 
 | // Finite differencing routine used by NumericDiffCostFunction. | 
 |  | 
 | #ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ | 
 | #define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ | 
 |  | 
 | #include <cstring> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/internal/variadic_evaluate.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Helper templates that allow evaluation of a variadic functor or a | 
 | // CostFunction object. | 
 | template <typename CostFunctor, | 
 |           int N0, int N1, int N2, int N3, int N4, | 
 |           int N5, int N6, int N7, int N8, int N9 > | 
 | bool EvaluateImpl(const CostFunctor* functor, | 
 |                   double const* const* parameters, | 
 |                   double* residuals, | 
 |                   const void* /* NOT USED */) { | 
 |   return VariadicEvaluate<CostFunctor, | 
 |                           double, | 
 |                           N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call( | 
 |                               *functor, | 
 |                               parameters, | 
 |                               residuals); | 
 | } | 
 |  | 
 | template <typename CostFunctor, | 
 |           int N0, int N1, int N2, int N3, int N4, | 
 |           int N5, int N6, int N7, int N8, int N9 > | 
 | bool EvaluateImpl(const CostFunctor* functor, | 
 |                   double const* const* parameters, | 
 |                   double* residuals, | 
 |                   const CostFunction* /* NOT USED */) { | 
 |   return functor->Evaluate(parameters, residuals, NULL); | 
 | } | 
 |  | 
 | // This is split from the main class because C++ doesn't allow partial template | 
 | // specializations for member functions. The alternative is to repeat the main | 
 | // class for differing numbers of parameters, which is also unfortunate. | 
 | template <typename CostFunctor, | 
 |           NumericDiffMethod kMethod, | 
 |           int kNumResiduals, | 
 |           int N0, int N1, int N2, int N3, int N4, | 
 |           int N5, int N6, int N7, int N8, int N9, | 
 |           int kParameterBlock, | 
 |           int kParameterBlockSize> | 
 | struct NumericDiff { | 
 |   // Mutates parameters but must restore them before return. | 
 |   static bool EvaluateJacobianForParameterBlock( | 
 |       const CostFunctor* functor, | 
 |       double const* residuals_at_eval_point, | 
 |       const double relative_step_size, | 
 |       int num_residuals, | 
 |       double **parameters, | 
 |       double *jacobian) { | 
 |     using Eigen::Map; | 
 |     using Eigen::Matrix; | 
 |     using Eigen::RowMajor; | 
 |     using Eigen::ColMajor; | 
 |  | 
 |     const int NUM_RESIDUALS = | 
 |         (kNumResiduals != ceres::DYNAMIC ? kNumResiduals : num_residuals); | 
 |  | 
 |     typedef Matrix<double, kNumResiduals, 1> ResidualVector; | 
 |     typedef Matrix<double, kParameterBlockSize, 1> ParameterVector; | 
 |  | 
 |     // The convoluted reasoning for choosing the Row/Column major | 
 |     // ordering of the matrix is an artifact of the restrictions in | 
 |     // Eigen that prevent it from creating RowMajor matrices with a | 
 |     // single column. In these cases, we ask for a ColMajor matrix. | 
 |     typedef Matrix<double, | 
 |                    kNumResiduals, | 
 |                    kParameterBlockSize, | 
 |                    (kParameterBlockSize == 1) ? ColMajor : RowMajor> | 
 |         JacobianMatrix; | 
 |  | 
 |     Map<JacobianMatrix> parameter_jacobian(jacobian, | 
 |                                            NUM_RESIDUALS, | 
 |                                            kParameterBlockSize); | 
 |  | 
 |     // Mutate 1 element at a time and then restore. | 
 |     Map<ParameterVector> x_plus_delta(parameters[kParameterBlock], | 
 |                                       kParameterBlockSize); | 
 |     ParameterVector x(x_plus_delta); | 
 |     ParameterVector step_size = x.array().abs() * relative_step_size; | 
 |  | 
 |     // To handle cases where a parameter is exactly zero, instead use | 
 |     // the mean step_size for the other dimensions. If all the | 
 |     // parameters are zero, there's no good answer. Take | 
 |     // relative_step_size as a guess and hope for the best. | 
 |     const double fallback_step_size = | 
 |         (step_size.sum() == 0) | 
 |         ? relative_step_size | 
 |         : step_size.sum() / step_size.rows(); | 
 |  | 
 |     // For each parameter in the parameter block, use finite differences to | 
 |     // compute the derivative for that parameter. | 
 |  | 
 |     ResidualVector residuals(NUM_RESIDUALS); | 
 |     for (int j = 0; j < kParameterBlockSize; ++j) { | 
 |       const double delta = | 
 |           (step_size(j) == 0.0) ? fallback_step_size : step_size(j); | 
 |  | 
 |       x_plus_delta(j) = x(j) + delta; | 
 |  | 
 |       if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>( | 
 |               functor, parameters, residuals.data(), functor)) { | 
 |         return false; | 
 |       } | 
 |  | 
 |       // Compute this column of the jacobian in 3 steps: | 
 |       // 1. Store residuals for the forward part. | 
 |       // 2. Subtract residuals for the backward (or 0) part. | 
 |       // 3. Divide out the run. | 
 |       parameter_jacobian.col(j) = residuals; | 
 |  | 
 |       double one_over_delta = 1.0 / delta; | 
 |       if (kMethod == CENTRAL) { | 
 |         // Compute the function on the other side of x(j). | 
 |         x_plus_delta(j) = x(j) - delta; | 
 |  | 
 |         if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>( | 
 |                 functor, parameters, residuals.data(), functor)) { | 
 |           return false; | 
 |         } | 
 |  | 
 |         parameter_jacobian.col(j) -= residuals; | 
 |         one_over_delta /= 2; | 
 |       } else { | 
 |         // Forward difference only; reuse existing residuals evaluation. | 
 |         parameter_jacobian.col(j) -= | 
 |             Map<const ResidualVector>(residuals_at_eval_point, NUM_RESIDUALS); | 
 |       } | 
 |       x_plus_delta(j) = x(j);  // Restore x_plus_delta. | 
 |  | 
 |       // Divide out the run to get slope. | 
 |       parameter_jacobian.col(j) *= one_over_delta; | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename CostFunctor, | 
 |           NumericDiffMethod kMethod, | 
 |           int kNumResiduals, | 
 |           int N0, int N1, int N2, int N3, int N4, | 
 |           int N5, int N6, int N7, int N8, int N9, | 
 |           int kParameterBlock> | 
 | struct NumericDiff<CostFunctor, kMethod, kNumResiduals, | 
 |                    N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, | 
 |                    kParameterBlock, 0> { | 
 |   // Mutates parameters but must restore them before return. | 
 |   static bool EvaluateJacobianForParameterBlock( | 
 |       const CostFunctor* functor, | 
 |       double const* residuals_at_eval_point, | 
 |       const double relative_step_size, | 
 |       const int num_residuals, | 
 |       double **parameters, | 
 |       double *jacobian) { | 
 |     LOG(FATAL) << "Control should never reach here."; | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_ |