| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // For generalized bi-partite Jacobian matrices that arise in | 
 | // Structure from Motion related problems, it is sometimes useful to | 
 | // have access to the two parts of the matrix as linear operators | 
 | // themselves. This class provides that functionality. | 
 |  | 
 | #ifndef CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ | 
 | #define CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/small_blas.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Given generalized bi-partite matrix A = [E F], with the same block | 
 | // structure as required by the Schur complement based solver, found | 
 | // in explicit_schur_complement_solver.h, provide access to the | 
 | // matrices E and F and their outer products E'E and F'F with | 
 | // themselves. | 
 | // | 
 | // Lack of BlockStructure object will result in a crash and if the | 
 | // block structure of the matrix does not satisfy the requirements of | 
 | // the Schur complement solver it will result in unpredictable and | 
 | // wrong output. | 
 | class PartitionedMatrixViewBase { | 
 |  public: | 
 |   virtual ~PartitionedMatrixViewBase() {} | 
 |  | 
 |   // y += E'x | 
 |   virtual void LeftMultiplyE(const double* x, double* y) const = 0; | 
 |  | 
 |   // y += F'x | 
 |   virtual void LeftMultiplyF(const double* x, double* y) const = 0; | 
 |  | 
 |   // y += Ex | 
 |   virtual void RightMultiplyE(const double* x, double* y) const = 0; | 
 |  | 
 |   // y += Fx | 
 |   virtual void RightMultiplyF(const double* x, double* y) const = 0; | 
 |  | 
 |   // Create and return the block diagonal of the matrix E'E. | 
 |   virtual BlockSparseMatrix* CreateBlockDiagonalEtE() const = 0; | 
 |  | 
 |   // Create and return the block diagonal of the matrix F'F. Caller | 
 |   // owns the result. | 
 |   virtual BlockSparseMatrix* CreateBlockDiagonalFtF() const = 0; | 
 |  | 
 |   // Compute the block diagonal of the matrix E'E and store it in | 
 |   // block_diagonal. The matrix block_diagonal is expected to have a | 
 |   // BlockStructure (preferably created using | 
 |   // CreateBlockDiagonalMatrixEtE) which is has the same structure as | 
 |   // the block diagonal of E'E. | 
 |   virtual void UpdateBlockDiagonalEtE( | 
 |       BlockSparseMatrix* block_diagonal) const = 0; | 
 |  | 
 |   // Compute the block diagonal of the matrix F'F and store it in | 
 |   // block_diagonal. The matrix block_diagonal is expected to have a | 
 |   // BlockStructure (preferably created using | 
 |   // CreateBlockDiagonalMatrixFtF) which is has the same structure as | 
 |   // the block diagonal of F'F. | 
 |   virtual void UpdateBlockDiagonalFtF( | 
 |       BlockSparseMatrix* block_diagonal) const = 0; | 
 |  | 
 |   virtual int num_col_blocks_e() const = 0; | 
 |   virtual int num_col_blocks_f() const = 0; | 
 |   virtual int num_cols_e()       const = 0; | 
 |   virtual int num_cols_f()       const = 0; | 
 |   virtual int num_rows()         const = 0; | 
 |   virtual int num_cols()         const = 0; | 
 |  | 
 |   static PartitionedMatrixViewBase* Create(const LinearSolver::Options& options, | 
 |                                            const BlockSparseMatrix& matrix); | 
 | }; | 
 |  | 
 | template <int kRowBlockSize = Eigen::Dynamic, | 
 |           int kEBlockSize = Eigen::Dynamic, | 
 |           int kFBlockSize = Eigen::Dynamic > | 
 | class PartitionedMatrixView : public PartitionedMatrixViewBase { | 
 |  public: | 
 |   // matrix = [E F], where the matrix E contains the first | 
 |   // num_col_blocks_a column blocks. | 
 |   PartitionedMatrixView(const BlockSparseMatrix& matrix, int num_col_blocks_e); | 
 |  | 
 |   virtual ~PartitionedMatrixView(); | 
 |   virtual void LeftMultiplyE(const double* x, double* y) const; | 
 |   virtual void LeftMultiplyF(const double* x, double* y) const; | 
 |   virtual void RightMultiplyE(const double* x, double* y) const; | 
 |   virtual void RightMultiplyF(const double* x, double* y) const; | 
 |   virtual BlockSparseMatrix* CreateBlockDiagonalEtE() const; | 
 |   virtual BlockSparseMatrix* CreateBlockDiagonalFtF() const; | 
 |   virtual void UpdateBlockDiagonalEtE(BlockSparseMatrix* block_diagonal) const; | 
 |   virtual void UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const; | 
 |   virtual int num_col_blocks_e() const { return num_col_blocks_e_;  } | 
 |   virtual int num_col_blocks_f() const { return num_col_blocks_f_;  } | 
 |   virtual int num_cols_e()       const { return num_cols_e_;        } | 
 |   virtual int num_cols_f()       const { return num_cols_f_;        } | 
 |   virtual int num_rows()         const { return matrix_.num_rows(); } | 
 |   virtual int num_cols()         const { return matrix_.num_cols(); } | 
 |  | 
 |  private: | 
 |   BlockSparseMatrix* CreateBlockDiagonalMatrixLayout(int start_col_block, | 
 |                                                      int end_col_block) const; | 
 |  | 
 |   const BlockSparseMatrix& matrix_; | 
 |   int num_row_blocks_e_; | 
 |   int num_col_blocks_e_; | 
 |   int num_col_blocks_f_; | 
 |   int num_cols_e_; | 
 |   int num_cols_f_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ |