| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/sparse_normal_cholesky_solver.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | #include <ctime> | 
 |  | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/cxsparse.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/suitesparse.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 | #include "Eigen/SparseCore" | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 | #include "Eigen/SparseCholesky" | 
 | #endif | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 | // A templated factorized and solve function, which allows us to use | 
 | // the same code independent of whether a AMD or a Natural ordering is | 
 | // used. | 
 | template <typename SimplicialCholeskySolver> | 
 | LinearSolver::Summary SimplicialLDLTSolve( | 
 |     Eigen::MappedSparseMatrix<double, Eigen::ColMajor>& lhs, | 
 |     const bool do_symbolic_analysis, | 
 |     SimplicialCholeskySolver* solver, | 
 |     double* rhs_and_solution, | 
 |     EventLogger* event_logger) { | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   if (do_symbolic_analysis) { | 
 |     solver->analyzePattern(lhs); | 
 |     event_logger->AddEvent("Analyze"); | 
 |     if (solver->info() != Eigen::Success) { | 
 |       summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |       summary.message = | 
 |           "Eigen failure. Unable to find symbolic factorization."; | 
 |       return summary; | 
 |     } | 
 |   } | 
 |  | 
 |   solver->factorize(lhs); | 
 |   event_logger->AddEvent("Factorize"); | 
 |   if (solver->info() != Eigen::Success) { | 
 |     summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |     summary.message = "Eigen failure. Unable to find numeric factorization."; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   const Vector rhs = VectorRef(rhs_and_solution, lhs.cols()); | 
 |  | 
 |   VectorRef(rhs_and_solution, lhs.cols()) = solver->solve(rhs); | 
 |   event_logger->AddEvent("Solve"); | 
 |   if (solver->info() != Eigen::Success) { | 
 |     summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |     summary.message = "Eigen failure. Unable to do triangular solve."; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   return summary; | 
 | } | 
 |  | 
 | #endif  // CERES_USE_EIGEN_SPARSE | 
 |  | 
 | }  // namespace | 
 |  | 
 | SparseNormalCholeskySolver::SparseNormalCholeskySolver( | 
 |     const LinearSolver::Options& options) | 
 |     : factor_(NULL), | 
 |       cxsparse_factor_(NULL), | 
 |       options_(options) { | 
 | } | 
 |  | 
 | void SparseNormalCholeskySolver::FreeFactorization() { | 
 |   if (factor_ != NULL) { | 
 |     ss_.Free(factor_); | 
 |     factor_ = NULL; | 
 |   } | 
 |  | 
 |   if (cxsparse_factor_ != NULL) { | 
 |     cxsparse_.Free(cxsparse_factor_); | 
 |     cxsparse_factor_ = NULL; | 
 |   } | 
 | } | 
 |  | 
 | SparseNormalCholeskySolver::~SparseNormalCholeskySolver() { | 
 |   FreeFactorization(); | 
 | } | 
 |  | 
 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl( | 
 |     CompressedRowSparseMatrix* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double * x) { | 
 |  | 
 |   const int num_cols = A->num_cols(); | 
 |   VectorRef(x, num_cols).setZero(); | 
 |   A->LeftMultiply(b, x); | 
 |  | 
 |   if (per_solve_options.D != NULL) { | 
 |     // Temporarily append a diagonal block to the A matrix, but undo | 
 |     // it before returning the matrix to the user. | 
 |     scoped_ptr<CompressedRowSparseMatrix> regularizer; | 
 |     if (A->col_blocks().size() > 0) { | 
 |       regularizer.reset(CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
 |                             per_solve_options.D, A->col_blocks())); | 
 |     } else { | 
 |       regularizer.reset(new CompressedRowSparseMatrix( | 
 |                             per_solve_options.D, num_cols)); | 
 |     } | 
 |     A->AppendRows(*regularizer); | 
 |   } | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   switch (options_.sparse_linear_algebra_library_type) { | 
 |     case SUITE_SPARSE: | 
 |       summary = SolveImplUsingSuiteSparse(A, per_solve_options, x); | 
 |       break; | 
 |     case CX_SPARSE: | 
 |       summary = SolveImplUsingCXSparse(A, per_solve_options, x); | 
 |       break; | 
 |     case EIGEN_SPARSE: | 
 |       summary = SolveImplUsingEigen(A, per_solve_options, x); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unknown sparse linear algebra library : " | 
 |                  << options_.sparse_linear_algebra_library_type; | 
 |   } | 
 |  | 
 |   if (per_solve_options.D != NULL) { | 
 |     A->DeleteRows(num_cols); | 
 |   } | 
 |  | 
 |   return summary; | 
 | } | 
 |  | 
 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingEigen( | 
 |     CompressedRowSparseMatrix* A, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double * rhs_and_solution) { | 
 | #ifndef CERES_USE_EIGEN_SPARSE | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |   summary.message = | 
 |       "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE " | 
 |       "because Ceres was not built with support for " | 
 |       "Eigen's SimplicialLDLT decomposition. " | 
 |       "This requires enabling building with -DEIGENSPARSE=ON."; | 
 |   return summary; | 
 |  | 
 | #else | 
 |  | 
 |   EventLogger event_logger("SparseNormalCholeskySolver::Eigen::Solve"); | 
 |   // Compute the normal equations. J'J delta = J'f and solve them | 
 |   // using a sparse Cholesky factorization. Notice that when compared | 
 |   // to SuiteSparse we have to explicitly compute the normal equations | 
 |   // before they can be factorized. CHOLMOD/SuiteSparse on the other | 
 |   // hand can just work off of Jt to compute the Cholesky | 
 |   // factorization of the normal equations. | 
 |   // | 
 |   // TODO(sameeragarwal): See note about how this maybe a bad idea for | 
 |   // dynamic sparsity. | 
 |   if (outer_product_.get() == NULL) { | 
 |     outer_product_.reset( | 
 |         CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( | 
 |             *A, &pattern_)); | 
 |   } | 
 |  | 
 |   CompressedRowSparseMatrix::ComputeOuterProduct( | 
 |       *A, pattern_, outer_product_.get()); | 
 |  | 
 |   // Map to an upper triangular column major matrix. | 
 |   // | 
 |   // outer_product_ is a compressed row sparse matrix and in lower | 
 |   // triangular form, when mapped to a compressed column sparse | 
 |   // matrix, it becomes an upper triangular matrix. | 
 |   Eigen::MappedSparseMatrix<double, Eigen::ColMajor> AtA( | 
 |       outer_product_->num_rows(), | 
 |       outer_product_->num_rows(), | 
 |       outer_product_->num_nonzeros(), | 
 |       outer_product_->mutable_rows(), | 
 |       outer_product_->mutable_cols(), | 
 |       outer_product_->mutable_values()); | 
 |  | 
 |   // Dynamic sparsity means that we cannot depend on a static analysis | 
 |   // of sparsity structure of the jacobian, so we compute a new | 
 |   // symbolic factorization every time. | 
 |   if (options_.dynamic_sparsity) { | 
 |     amd_ldlt_.reset(NULL); | 
 |   } | 
 |  | 
 |   bool do_symbolic_analysis = false; | 
 |  | 
 |   // If using post ordering or dynamic sparsity, or an old version of | 
 |   // Eigen, we cannot depend on a preordered jacobian, so we work with | 
 |   // a SimplicialLDLT decomposition with AMD ordering. | 
 |   if (options_.use_postordering || | 
 |       options_.dynamic_sparsity || | 
 |       !EIGEN_VERSION_AT_LEAST(3, 2, 2)) { | 
 |     if (amd_ldlt_.get() == NULL) { | 
 |       amd_ldlt_.reset(new SimplicialLDLTWithAMDOrdering); | 
 |       do_symbolic_analysis = true; | 
 |     } | 
 |  | 
 |     return SimplicialLDLTSolve(AtA, | 
 |                                do_symbolic_analysis, | 
 |                                amd_ldlt_.get(), | 
 |                                rhs_and_solution, | 
 |                                &event_logger); | 
 |   } | 
 |  | 
 | #if EIGEN_VERSION_AT_LEAST(3,2,2) | 
 |   // The common case | 
 |   if (natural_ldlt_.get() == NULL) { | 
 |     natural_ldlt_.reset(new SimplicialLDLTWithNaturalOrdering); | 
 |     do_symbolic_analysis = true; | 
 |   } | 
 |  | 
 |   return SimplicialLDLTSolve(AtA, | 
 |                              do_symbolic_analysis, | 
 |                              natural_ldlt_.get(), | 
 |                              rhs_and_solution, | 
 |                              &event_logger); | 
 | #endif | 
 |  | 
 | #endif  // EIGEN_USE_EIGEN_SPARSE | 
 | } | 
 |  | 
 |  | 
 |  | 
 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( | 
 |     CompressedRowSparseMatrix* A, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double * rhs_and_solution) { | 
 | #ifdef CERES_NO_CXSPARSE | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |   summary.message = | 
 |       "SPARSE_NORMAL_CHOLESKY cannot be used with CX_SPARSE " | 
 |       "because Ceres was not built with support for CXSparse. " | 
 |       "This requires enabling building with -DCXSPARSE=ON."; | 
 |  | 
 |   return summary; | 
 |  | 
 | #else | 
 |  | 
 |   EventLogger event_logger("SparseNormalCholeskySolver::CXSparse::Solve"); | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 1; | 
 |   summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |   summary.message = "Success."; | 
 |  | 
 |   // Compute the normal equations. J'J delta = J'f and solve them | 
 |   // using a sparse Cholesky factorization. Notice that when compared | 
 |   // to SuiteSparse we have to explicitly compute the normal equations | 
 |   // before they can be factorized. CHOLMOD/SuiteSparse on the other | 
 |   // hand can just work off of Jt to compute the Cholesky | 
 |   // factorization of the normal equations. | 
 |   // | 
 |   // TODO(sameeragarwal): If dynamic sparsity is enabled, then this is | 
 |   // not a good idea performance wise, since the jacobian has far too | 
 |   // many entries and the program will go crazy with memory. | 
 |   if (outer_product_.get() == NULL) { | 
 |     outer_product_.reset( | 
 |         CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( | 
 |             *A, &pattern_)); | 
 |   } | 
 |  | 
 |   CompressedRowSparseMatrix::ComputeOuterProduct( | 
 |       *A, pattern_, outer_product_.get()); | 
 |   cs_di AtA_view = | 
 |       cxsparse_.CreateSparseMatrixTransposeView(outer_product_.get()); | 
 |   cs_di* AtA = &AtA_view; | 
 |  | 
 |   event_logger.AddEvent("Setup"); | 
 |  | 
 |   // Compute symbolic factorization if not available. | 
 |   if (options_.dynamic_sparsity) { | 
 |     FreeFactorization(); | 
 |   } | 
 |   if (cxsparse_factor_ == NULL) { | 
 |     if (options_.use_postordering) { | 
 |       cxsparse_factor_ = cxsparse_.BlockAnalyzeCholesky(AtA, | 
 |                                                         A->col_blocks(), | 
 |                                                         A->col_blocks()); | 
 |     } else { | 
 |       if (options_.dynamic_sparsity) { | 
 |         cxsparse_factor_ = cxsparse_.AnalyzeCholesky(AtA); | 
 |       } else { | 
 |         cxsparse_factor_ = cxsparse_.AnalyzeCholeskyWithNaturalOrdering(AtA); | 
 |       } | 
 |     } | 
 |   } | 
 |   event_logger.AddEvent("Analysis"); | 
 |  | 
 |   if (cxsparse_factor_ == NULL) { | 
 |     summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |     summary.message = | 
 |         "CXSparse failure. Unable to find symbolic factorization."; | 
 |   } else if (!cxsparse_.SolveCholesky(AtA, | 
 |                                       cxsparse_factor_, | 
 |                                       rhs_and_solution)) { | 
 |     summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |     summary.message = "CXSparse::SolveCholesky failed."; | 
 |   } | 
 |   event_logger.AddEvent("Solve"); | 
 |  | 
 |   return summary; | 
 | #endif | 
 | } | 
 |  | 
 | LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( | 
 |     CompressedRowSparseMatrix* A, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double * rhs_and_solution) { | 
 | #ifdef CERES_NO_SUITESPARSE | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.num_iterations = 0; | 
 |   summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |   summary.message = | 
 |       "SPARSE_NORMAL_CHOLESKY cannot be used with SUITE_SPARSE " | 
 |       "because Ceres was not built with support for SuiteSparse. " | 
 |       "This requires enabling building with -DSUITESPARSE=ON."; | 
 |   return summary; | 
 |  | 
 | #else | 
 |  | 
 |   EventLogger event_logger("SparseNormalCholeskySolver::SuiteSparse::Solve"); | 
 |   LinearSolver::Summary summary; | 
 |   summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |   summary.num_iterations = 1; | 
 |   summary.message = "Success."; | 
 |  | 
 |   const int num_cols = A->num_cols(); | 
 |   cholmod_sparse lhs = ss_.CreateSparseMatrixTransposeView(A); | 
 |   event_logger.AddEvent("Setup"); | 
 |  | 
 |   if (options_.dynamic_sparsity) { | 
 |     FreeFactorization(); | 
 |   } | 
 |   if (factor_ == NULL) { | 
 |     if (options_.use_postordering) { | 
 |       factor_ = ss_.BlockAnalyzeCholesky(&lhs, | 
 |                                          A->col_blocks(), | 
 |                                          A->row_blocks(), | 
 |                                          &summary.message); | 
 |     } else { | 
 |       if (options_.dynamic_sparsity) { | 
 |         factor_ = ss_.AnalyzeCholesky(&lhs, &summary.message); | 
 |       } else { | 
 |         factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&lhs, | 
 |                                                          &summary.message); | 
 |       } | 
 |     } | 
 |   } | 
 |   event_logger.AddEvent("Analysis"); | 
 |  | 
 |   if (factor_ == NULL) { | 
 |     summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; | 
 |     // No need to set message as it has already been set by the | 
 |     // symbolic analysis routines above. | 
 |     return summary; | 
 |   } | 
 |  | 
 |   summary.termination_type = ss_.Cholesky(&lhs, factor_, &summary.message); | 
 |   if (summary.termination_type != LINEAR_SOLVER_SUCCESS) { | 
 |     return summary; | 
 |   } | 
 |  | 
 |   cholmod_dense* rhs = ss_.CreateDenseVector(rhs_and_solution, | 
 |                                              num_cols, | 
 |                                              num_cols); | 
 |   cholmod_dense* solution = ss_.Solve(factor_, rhs, &summary.message); | 
 |   event_logger.AddEvent("Solve"); | 
 |  | 
 |   ss_.Free(rhs); | 
 |   if (solution != NULL) { | 
 |     memcpy(rhs_and_solution, solution->x, num_cols * sizeof(*rhs_and_solution)); | 
 |     ss_.Free(solution); | 
 |   } else { | 
 |     // No need to set message as it has already been set by the | 
 |     // numeric factorization routine above. | 
 |     summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |   } | 
 |  | 
 |   event_logger.AddEvent("Teardown"); | 
 |   return summary; | 
 | #endif | 
 | } | 
 |  | 
 | }   // namespace internal | 
 | }   // namespace ceres |