|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. | 
|  |  | 
|  | #ifndef CERES_INTERNAL_SUITESPARSE_H_ | 
|  | #define CERES_INTERNAL_SUITESPARSE_H_ | 
|  |  | 
|  | // This include must come before any #ifndef check on Ceres compile options. | 
|  | #include "ceres/internal/port.h" | 
|  |  | 
|  | #ifndef CERES_NO_SUITESPARSE | 
|  |  | 
|  | #include <cstring> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "cholmod.h" | 
|  | #include "glog/logging.h" | 
|  | #include "SuiteSparseQR.hpp" | 
|  |  | 
|  | // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled | 
|  | // if SuiteSparse was compiled with Metis support. This makes | 
|  | // calling and linking into cholmod_camd problematic even though it | 
|  | // has nothing to do with Metis. This has been fixed reliably in | 
|  | // 4.2.0. | 
|  | // | 
|  | // The fix was actually committed in 4.1.0, but there is | 
|  | // some confusion about a silent update to the tar ball, so we are | 
|  | // being conservative and choosing the next minor version where | 
|  | // things are stable. | 
|  | #if (SUITESPARSE_VERSION < 4002) | 
|  | #define CERES_NO_CAMD | 
|  | #endif | 
|  |  | 
|  | // UF_long is deprecated but SuiteSparse_long is only available in | 
|  | // newer versions of SuiteSparse. So for older versions of | 
|  | // SuiteSparse, we define SuiteSparse_long to be the same as UF_long, | 
|  | // which is what recent versions of SuiteSparse do anyways. | 
|  | #ifndef SuiteSparse_long | 
|  | #define SuiteSparse_long UF_long | 
|  | #endif | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | class CompressedRowSparseMatrix; | 
|  | class TripletSparseMatrix; | 
|  |  | 
|  | // The raw CHOLMOD and SuiteSparseQR libraries have a slightly | 
|  | // cumbersome c like calling format. This object abstracts it away and | 
|  | // provides the user with a simpler interface. The methods here cannot | 
|  | // be static as a cholmod_common object serves as a global variable | 
|  | // for all cholmod function calls. | 
|  | class SuiteSparse { | 
|  | public: | 
|  | SuiteSparse(); | 
|  | ~SuiteSparse(); | 
|  |  | 
|  | // Functions for building cholmod_sparse objects from sparse | 
|  | // matrices stored in triplet form. The matrix A is not | 
|  | // modifed. Called owns the result. | 
|  | cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); | 
|  |  | 
|  | // This function works like CreateSparseMatrix, except that the | 
|  | // return value corresponds to A' rather than A. | 
|  | cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); | 
|  |  | 
|  | // Create a cholmod_sparse wrapper around the contents of A. This is | 
|  | // a shallow object, which refers to the contents of A and does not | 
|  | // use the SuiteSparse machinery to allocate memory. | 
|  | cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); | 
|  |  | 
|  | // Given a vector x, build a cholmod_dense vector of size out_size | 
|  | // with the first in_size entries copied from x. If x is NULL, then | 
|  | // an all zeros vector is returned. Caller owns the result. | 
|  | cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); | 
|  |  | 
|  | // The matrix A is scaled using the matrix whose diagonal is the | 
|  | // vector scale. mode describes how scaling is applied. Possible | 
|  | // values are CHOLMOD_ROW for row scaling - diag(scale) * A, | 
|  | // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM | 
|  | // for symmetric scaling which scales both the rows and the columns | 
|  | // - diag(scale) * A * diag(scale). | 
|  | void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { | 
|  | cholmod_scale(scale, mode, A, &cc_); | 
|  | } | 
|  |  | 
|  | // Create and return a matrix m = A * A'. Caller owns the | 
|  | // result. The matrix A is not modified. | 
|  | cholmod_sparse* AATranspose(cholmod_sparse* A) { | 
|  | cholmod_sparse*m =  cholmod_aat(A, NULL, A->nrow, 1, &cc_); | 
|  | m->stype = 1;  // Pay attention to the upper triangular part. | 
|  | return m; | 
|  | } | 
|  |  | 
|  | // y = alpha * A * x + beta * y. Only y is modified. | 
|  | void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta, | 
|  | cholmod_dense* x, cholmod_dense* y) { | 
|  | double alpha_[2] = {alpha, 0}; | 
|  | double beta_[2] = {beta, 0}; | 
|  | cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); | 
|  | } | 
|  |  | 
|  | // Find an ordering of A or AA' (if A is unsymmetric) that minimizes | 
|  | // the fill-in in the Cholesky factorization of the corresponding | 
|  | // matrix. This is done by using the AMD algorithm. | 
|  | // | 
|  | // Using this ordering, the symbolic Cholesky factorization of A (or | 
|  | // AA') is computed and returned. | 
|  | // | 
|  | // A is not modified, only the pattern of non-zeros of A is used, | 
|  | // the actual numerical values in A are of no consequence. | 
|  | // | 
|  | // message contains an explanation of the failures if any. | 
|  | // | 
|  | // Caller owns the result. | 
|  | cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, std::string* message); | 
|  |  | 
|  | cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, | 
|  | const std::vector<int>& row_blocks, | 
|  | const std::vector<int>& col_blocks, | 
|  | std::string* message); | 
|  |  | 
|  | // If A is symmetric, then compute the symbolic Cholesky | 
|  | // factorization of A(ordering, ordering). If A is unsymmetric, then | 
|  | // compute the symbolic factorization of | 
|  | // A(ordering,:) A(ordering,:)'. | 
|  | // | 
|  | // A is not modified, only the pattern of non-zeros of A is used, | 
|  | // the actual numerical values in A are of no consequence. | 
|  | // | 
|  | // message contains an explanation of the failures if any. | 
|  | // | 
|  | // Caller owns the result. | 
|  | cholmod_factor* AnalyzeCholeskyWithUserOrdering( | 
|  | cholmod_sparse* A, | 
|  | const std::vector<int>& ordering, | 
|  | std::string* message); | 
|  |  | 
|  | // Perform a symbolic factorization of A without re-ordering A. No | 
|  | // postordering of the elimination tree is performed. This ensures | 
|  | // that the symbolic factor does not introduce an extra permutation | 
|  | // on the matrix. See the documentation for CHOLMOD for more details. | 
|  | // | 
|  | // message contains an explanation of the failures if any. | 
|  | cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A, | 
|  | std::string* message); | 
|  |  | 
|  | // Use the symbolic factorization in L, to find the numerical | 
|  | // factorization for the matrix A or AA^T. Return true if | 
|  | // successful, false otherwise. L contains the numeric factorization | 
|  | // on return. | 
|  | // | 
|  | // message contains an explanation of the failures if any. | 
|  | LinearSolverTerminationType Cholesky(cholmod_sparse* A, | 
|  | cholmod_factor* L, | 
|  | std::string* message); | 
|  |  | 
|  | // Given a Cholesky factorization of a matrix A = LL^T, solve the | 
|  | // linear system Ax = b, and return the result. If the Solve fails | 
|  | // NULL is returned. Caller owns the result. | 
|  | // | 
|  | // message contains an explanation of the failures if any. | 
|  | cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, std::string* message); | 
|  |  | 
|  | // By virtue of the modeling layer in Ceres being block oriented, | 
|  | // all the matrices used by Ceres are also block oriented. When | 
|  | // doing sparse direct factorization of these matrices the | 
|  | // fill-reducing ordering algorithms (in particular AMD) can either | 
|  | // be run on the block or the scalar form of these matrices. The two | 
|  | // SuiteSparse::AnalyzeCholesky methods allows the the client to | 
|  | // compute the symbolic factorization of a matrix by either using | 
|  | // AMD on the matrix or a user provided ordering of the rows. | 
|  | // | 
|  | // But since the underlying matrices are block oriented, it is worth | 
|  | // running AMD on just the block structre of these matrices and then | 
|  | // lifting these block orderings to a full scalar ordering. This | 
|  | // preserves the block structure of the permuted matrix, and exposes | 
|  | // more of the super-nodal structure of the matrix to the numerical | 
|  | // factorization routines. | 
|  | // | 
|  | // Find the block oriented AMD ordering of a matrix A, whose row and | 
|  | // column blocks are given by row_blocks, and col_blocks | 
|  | // respectively. The matrix may or may not be symmetric. The entries | 
|  | // of col_blocks do not need to sum to the number of columns in | 
|  | // A. If this is the case, only the first sum(col_blocks) are used | 
|  | // to compute the ordering. | 
|  | bool BlockAMDOrdering(const cholmod_sparse* A, | 
|  | const std::vector<int>& row_blocks, | 
|  | const std::vector<int>& col_blocks, | 
|  | std::vector<int>* ordering); | 
|  |  | 
|  | // Find a fill reducing approximate minimum degree | 
|  | // ordering. ordering is expected to be large enough to hold the | 
|  | // ordering. | 
|  | bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering); | 
|  |  | 
|  |  | 
|  | // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled | 
|  | // if SuiteSparse was compiled with Metis support. This makes | 
|  | // calling and linking into cholmod_camd problematic even though it | 
|  | // has nothing to do with Metis. This has been fixed reliably in | 
|  | // 4.2.0. | 
|  | // | 
|  | // The fix was actually committed in 4.1.0, but there is | 
|  | // some confusion about a silent update to the tar ball, so we are | 
|  | // being conservative and choosing the next minor version where | 
|  | // things are stable. | 
|  | static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() { | 
|  | return (SUITESPARSE_VERSION > 4001); | 
|  | } | 
|  |  | 
|  | // Find a fill reducing approximate minimum degree | 
|  | // ordering. constraints is an array which associates with each | 
|  | // column of the matrix an elimination group. i.e., all columns in | 
|  | // group 0 are eliminated first, all columns in group 1 are | 
|  | // eliminated next etc. This function finds a fill reducing ordering | 
|  | // that obeys these constraints. | 
|  | // | 
|  | // Calling ApproximateMinimumDegreeOrdering is equivalent to calling | 
|  | // ConstrainedApproximateMinimumDegreeOrdering with a constraint | 
|  | // array that puts all columns in the same elimination group. | 
|  | // | 
|  | // If CERES_NO_CAMD is defined then calling this function will | 
|  | // result in a crash. | 
|  | bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, | 
|  | int* constraints, | 
|  | int* ordering); | 
|  |  | 
|  | void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } | 
|  | void Free(cholmod_dense* m)  { cholmod_free_dense(&m, &cc_);  } | 
|  | void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } | 
|  |  | 
|  | void Print(cholmod_sparse* m, const std::string& name) { | 
|  | cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); | 
|  | } | 
|  |  | 
|  | void Print(cholmod_dense* m, const std::string& name) { | 
|  | cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); | 
|  | } | 
|  |  | 
|  | void Print(cholmod_triplet* m, const std::string& name) { | 
|  | cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); | 
|  | } | 
|  |  | 
|  | cholmod_common* mutable_cc() { return &cc_; } | 
|  |  | 
|  | private: | 
|  | cholmod_common cc_; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #else  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | typedef void cholmod_factor; | 
|  |  | 
|  | class SuiteSparse { | 
|  | public: | 
|  | // Defining this static function even when SuiteSparse is not | 
|  | // available, allows client code to check for the presence of CAMD | 
|  | // without checking for the absence of the CERES_NO_CAMD symbol. | 
|  | // | 
|  | // This is safer because the symbol maybe missing due to a user | 
|  | // accidently not including suitesparse.h in their code when | 
|  | // checking for the symbol. | 
|  | static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Free(void* arg) {} | 
|  | }; | 
|  |  | 
|  | #endif  // CERES_NO_SUITESPARSE | 
|  |  | 
|  | #endif  // CERES_INTERNAL_SUITESPARSE_H_ |