| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: mierle@gmail.com (Keir Mierle) |
| // |
| // An incomplete C API for Ceres. |
| // |
| // TODO(keir): Figure out why logging does not seem to work. |
| |
| #include "ceres/c_api.h" |
| |
| #include <iostream> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "ceres/cost_function.h" |
| #include "ceres/loss_function.h" |
| #include "ceres/problem.h" |
| #include "ceres/solver.h" |
| #include "ceres/types.h" // for std |
| #include "glog/logging.h" |
| |
| using ceres::Problem; |
| |
| void ceres_init() { |
| // This is not ideal, but it's not clear what to do if there is no gflags and |
| // no access to command line arguments. |
| char message[] = "<unknown>"; |
| google::InitGoogleLogging(message); |
| } |
| |
| ceres_problem_t* ceres_create_problem() { |
| return reinterpret_cast<ceres_problem_t*>(new Problem); |
| } |
| |
| void ceres_free_problem(ceres_problem_t* problem) { |
| delete reinterpret_cast<Problem*>(problem); |
| } |
| |
| // This cost function wraps a C-level function pointer from the user, to bridge |
| // between C and C++. |
| class CERES_NO_EXPORT CallbackCostFunction final : public ceres::CostFunction { |
| public: |
| CallbackCostFunction(ceres_cost_function_t cost_function, |
| void* user_data, |
| int num_residuals, |
| int num_parameter_blocks, |
| int* parameter_block_sizes) |
| : cost_function_(cost_function), user_data_(user_data) { |
| set_num_residuals(num_residuals); |
| for (int i = 0; i < num_parameter_blocks; ++i) { |
| mutable_parameter_block_sizes()->push_back(parameter_block_sizes[i]); |
| } |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const final { |
| return (*cost_function_)( |
| user_data_, const_cast<double**>(parameters), residuals, jacobians); |
| } |
| |
| private: |
| ceres_cost_function_t cost_function_; |
| void* user_data_; |
| }; |
| |
| // This loss function wraps a C-level function pointer from the user, to bridge |
| // between C and C++. |
| class CallbackLossFunction final : public ceres::LossFunction { |
| public: |
| explicit CallbackLossFunction(ceres_loss_function_t loss_function, |
| void* user_data) |
| : loss_function_(loss_function), user_data_(user_data) {} |
| void Evaluate(double sq_norm, double* rho) const final { |
| (*loss_function_)(user_data_, sq_norm, rho); |
| } |
| |
| private: |
| ceres_loss_function_t loss_function_; |
| void* user_data_; |
| }; |
| |
| // Wrappers for the stock loss functions. |
| void* ceres_create_huber_loss_function_data(double a) { |
| return new ceres::HuberLoss(a); |
| } |
| void* ceres_create_softl1_loss_function_data(double a) { |
| return new ceres::SoftLOneLoss(a); |
| } |
| void* ceres_create_cauchy_loss_function_data(double a) { |
| return new ceres::CauchyLoss(a); |
| } |
| void* ceres_create_arctan_loss_function_data(double a) { |
| return new ceres::ArctanLoss(a); |
| } |
| void* ceres_create_tolerant_loss_function_data(double a, double b) { |
| return new ceres::TolerantLoss(a, b); |
| } |
| |
| void ceres_free_stock_loss_function_data(void* loss_function_data) { |
| delete reinterpret_cast<ceres::LossFunction*>(loss_function_data); |
| } |
| |
| void ceres_stock_loss_function(void* user_data, |
| double squared_norm, |
| double out[3]) { |
| reinterpret_cast<ceres::LossFunction*>(user_data)->Evaluate(squared_norm, |
| out); |
| } |
| |
| ceres_residual_block_id_t* ceres_problem_add_residual_block( |
| ceres_problem_t* problem, |
| ceres_cost_function_t cost_function, |
| void* cost_function_data, |
| ceres_loss_function_t loss_function, |
| void* loss_function_data, |
| int num_residuals, |
| int num_parameter_blocks, |
| int* parameter_block_sizes, |
| double** parameters) { |
| auto* ceres_problem = reinterpret_cast<Problem*>(problem); |
| |
| auto callback_cost_function = |
| std::make_unique<CallbackCostFunction>(cost_function, |
| cost_function_data, |
| num_residuals, |
| num_parameter_blocks, |
| parameter_block_sizes); |
| |
| std::unique_ptr<ceres::LossFunction> callback_loss_function; |
| if (loss_function != nullptr) { |
| callback_loss_function = std::make_unique<CallbackLossFunction>( |
| loss_function, loss_function_data); |
| } |
| |
| std::vector<double*> parameter_blocks(parameters, |
| parameters + num_parameter_blocks); |
| return reinterpret_cast<ceres_residual_block_id_t*>( |
| ceres_problem->AddResidualBlock(callback_cost_function.release(), |
| callback_loss_function.release(), |
| parameter_blocks)); |
| } |
| |
| void ceres_solve(ceres_problem_t* c_problem) { |
| auto* problem = reinterpret_cast<Problem*>(c_problem); |
| |
| // TODO(keir): Obviously, this way of setting options won't scale or last. |
| // Instead, figure out a way to specify some of the options without |
| // duplicating everything. |
| ceres::Solver::Options options; |
| options.max_num_iterations = 100; |
| options.linear_solver_type = ceres::DENSE_QR; |
| options.minimizer_progress_to_stdout = true; |
| |
| ceres::Solver::Summary summary; |
| ceres::Solve(options, problem, &summary); |
| std::cout << summary.FullReport() << "\n"; |
| } |