blob: 764b306c6798bd1af7a91fac8778429c63cc1545 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2014 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/cubic_interpolation.h"
#include <math.h>
#include "glog/logging.h"
namespace ceres {
namespace {
// Given samples from a function sampled at four equally spaced points,
//
// p0 = f(-1)
// p1 = f(0)
// p2 = f(1)
// p3 = f(2)
//
// Evaluate the cubic Hermite spline (also known as the Catmull-Rom
// spline) at a point x that lies in the interval [0, 1].
//
// This is also the interpolation kernel (for the case of a = 0.5) as
// proposed by R. Keys, in:
//
// "Cubic convolution interpolation for digital image processing".
// IEEE Transactions on Acoustics, Speech, and Signal Processing
// 29 (6): 1153–1160.
//
// For more details see
//
// http://en.wikipedia.org/wiki/Cubic_Hermite_spline
// http://en.wikipedia.org/wiki/Bicubic_interpolation
inline void CubicHermiteSpline(const double p0,
const double p1,
const double p2,
const double p3,
const double x,
double* f,
double* dfdx) {
const double a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3);
const double b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3);
const double c = 0.5 * (-p0 + p2);
const double d = p1;
// Use Horner's rule to evaluate the function value and its
// derivative.
// f = ax^3 + bx^2 + cx + d
if (f != NULL) {
*f = d + x * (c + x * (b + x * a));
}
// dfdx = 3ax^2 + 2bx + c
if (dfdx != NULL) {
*dfdx = c + x * (2.0 * b + 3.0 * a * x);
}
}
} // namespace
CubicInterpolator::CubicInterpolator(const double* values, const int num_values)
: values_(CHECK_NOTNULL(values)),
num_values_(num_values) {
CHECK_GT(num_values, 1);
}
bool CubicInterpolator::Evaluate(const double x,
double* f,
double* dfdx) const {
if (x < 0 || x > num_values_ - 1) {
LOG(ERROR) << "x = " << x
<< " is not in the interval [0, " << num_values_ - 1 << "].";
return false;
}
int n = floor(x);
// Handle the case where the point sits exactly on the right boundary.
if (n == num_values_ - 1) {
n -= 1;
}
const double p1 = values_[n];
const double p2 = values_[n + 1];
const double p0 = (n > 0) ? values_[n - 1] : (2.0 * p1 - p2);
const double p3 = (n < (num_values_ - 2)) ? values_[n + 2] : (2.0 * p2 - p1);
CubicHermiteSpline(p0, p1, p2, p3, x - n, f, dfdx);
return true;
}
BiCubicInterpolator::BiCubicInterpolator(const double* values,
const int num_rows,
const int num_cols)
: values_(CHECK_NOTNULL(values)),
num_rows_(num_rows),
num_cols_(num_cols) {
CHECK_GT(num_rows, 1);
CHECK_GT(num_cols, 1);
}
bool BiCubicInterpolator::Evaluate(const double r,
const double c,
double* f,
double* dfdr,
double* dfdc) const {
if (r < 0 || r > num_rows_ - 1 || c < 0 || c > num_cols_ - 1) {
LOG(ERROR) << "(r, c) = " << r << ", " << c
<< " is not in the square defined by [0, 0] "
<< " and [" << num_rows_ - 1 << ", " << num_cols_ - 1 << "]";
return false;
}
int row = floor(r);
// Handle the case where the point sits exactly on the bottom
// boundary.
if (row == num_rows_ - 1) {
row -= 1;
}
int col = floor(c);
// Handle the case where the point sits exactly on the right
// boundary.
if (col == num_cols_ - 1) {
col -= 1;
}
#define v(n, m) values_[(n) * num_cols_ + m]
// BiCubic interpolation requires 16 values around the point being
// evaluated. We will use pij, to indicate the elements of the 4x4
// array of values.
//
// col
// p00 p01 p02 p03
// row p10 p11 p12 p13
// p20 p21 p22 p23
// p30 p31 p32 p33
//
// The point (r,c) being evaluated is assumed to lie in the square
// defined by p11, p12, p22 and p21.
// These four entries are guaranteed to be in the values_ array.
const double p11 = v(row, col);
const double p12 = v(row, col + 1);
const double p21 = v(row + 1, col);
const double p22 = v(row + 1, col + 1);
// If we are in rows >= 1, then choose the element from the row - 1,
// otherwise linearly interpolate from row and row + 1.
const double p01 = (row > 0) ? v(row - 1, col) : 2 * p11 - p21;
const double p02 = (row > 0) ? v(row - 1, col + 1) : 2 * p12 - p22;
// If we are in row < num_rows_ - 2, then pick the element from the
// row + 2, otherwise linearly interpolate from row and row + 1.
const double p31 = (row < num_rows_ - 2) ? v(row + 2, col) : 2 * p21 - p11;
const double p32 = (row < num_rows_ - 2) ? v(row + 2, col + 1) : 2 * p22 - p12; // NOLINT
// Same logic as above, applies to the columns instead of rows.
const double p10 = (col > 0) ? v(row, col - 1) : 2 * p11 - p12;
const double p20 = (col > 0) ? v(row + 1, col - 1) : 2 * p21 - p22;
const double p13 = (col < num_cols_ - 2) ? v(row, col + 2) : 2 * p12 - p11;
const double p23 = (col < num_cols_ - 2) ? v(row + 1, col + 2) : 2 * p22 - p21; // NOLINT
// The four corners of the block require a bit more care. Let us
// consider the evaluation of p00, the other three corners follow in
// the same manner.
//
// There are four cases in which we need to evaluate p00.
//
// row > 0, col > 0 : v(row, col)
// row = 0, col > 1 : Interpolate p10 & p20
// row > 1, col = 0 : Interpolate p01 & p02
// row = 0, col = 0 : Interpolate p10 & p20, or p01 & p02.
double p00, p03;
if (row > 0) {
if (col > 0) {
p00 = v(row - 1, col - 1);
} else {
p00 = 2 * p01 - p02;
}
if (col < num_cols_ - 2) {
p03 = v(row - 1, col + 2);
} else {
p03 = 2 * p02 - p01;
}
} else {
p00 = 2 * p10 - p20;
p03 = 2 * p13 - p23;
}
double p30, p33;
if (row < num_rows_ - 2) {
if (col > 0) {
p30 = v(row + 2, col - 1);
} else {
p30 = 2 * p31 - p32;
}
if (col < num_cols_ - 2) {
p33 = v(row + 2, col + 2);
} else {
p33 = 2 * p32 - p31;
}
} else {
p30 = 2 * p20 - p10;
p33 = 2 * p23 - p13;
}
// Interpolate along each of the four rows, evaluating the function
// value and the horizontal derivative in each row.
double f0, f1, f2, f3;
double df0dc, df1dc, df2dc, df3dc;
CubicHermiteSpline(p00, p01, p02, p03, c - col, &f0, &df0dc);
CubicHermiteSpline(p10, p11, p12, p13, c - col, &f1, &df1dc);
CubicHermiteSpline(p20, p21, p22, p23, c - col, &f2, &df2dc);
CubicHermiteSpline(p30, p31, p32, p33, c - col, &f3, &df3dc);
// Interpolate vertically the interpolated value from each row and
// compute the derivative along the columns.
CubicHermiteSpline(f0, f1, f2, f3, r - row, f, dfdr);
if (dfdc != NULL) {
// Interpolate vertically the derivative along the columns.
CubicHermiteSpline(df0dc, df1dc, df2dc, df3dc, r - row, dfdc, NULL);
}
return true;
#undef v
}
} // namespace ceres