| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: strandmark@google.com (Petter Strandmark) | 
 |  | 
 | #ifndef CERES_NO_CXSPARSE | 
 |  | 
 | #include "ceres/cxsparse.h" | 
 |  | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | CXSparse::CXSparse() : scratch_(NULL), scratch_size_(0) { | 
 | } | 
 |  | 
 | CXSparse::~CXSparse() { | 
 |   if (scratch_size_ > 0) { | 
 |     cs_free(scratch_); | 
 |   } | 
 | } | 
 |  | 
 | bool CXSparse::SolveCholesky(cs_di* A, | 
 |                              cs_dis* symbolic_factorization, | 
 |                              double* b) { | 
 |   // Make sure we have enough scratch space available. | 
 |   if (scratch_size_ < A->n) { | 
 |     if (scratch_size_ > 0) { | 
 |       cs_free(scratch_); | 
 |     } | 
 |     scratch_ = reinterpret_cast<CS_ENTRY*>(cs_malloc(A->n, sizeof(CS_ENTRY))); | 
 |   } | 
 |  | 
 |   // Solve using Cholesky factorization | 
 |   csn* numeric_factorization = cs_chol(A, symbolic_factorization); | 
 |   if (numeric_factorization == NULL) { | 
 |     LOG(WARNING) << "Cholesky factorization failed."; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // When the Cholesky factorization succeeded, these methods are guaranteed to | 
 |   // succeeded as well. In the comments below, "x" refers to the scratch space. | 
 |   // | 
 |   // Set x = P * b. | 
 |   cs_ipvec(symbolic_factorization->pinv, b, scratch_, A->n); | 
 |  | 
 |   // Set x = L \ x. | 
 |   cs_lsolve(numeric_factorization->L, scratch_); | 
 |  | 
 |   // Set x = L' \ x. | 
 |   cs_ltsolve(numeric_factorization->L, scratch_); | 
 |  | 
 |   // Set b = P' * x. | 
 |   cs_pvec(symbolic_factorization->pinv, scratch_, b, A->n); | 
 |  | 
 |   // Free Cholesky factorization. | 
 |   cs_nfree(numeric_factorization); | 
 |   return true; | 
 | } | 
 |  | 
 | cs_dis* CXSparse::AnalyzeCholesky(cs_di* A) { | 
 |   // order = 1 for Cholesky factorization. | 
 |   return cs_schol(1, A); | 
 | } | 
 |  | 
 | cs_di CXSparse::CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A) { | 
 |   cs_di At; | 
 |   At.m = A->num_cols(); | 
 |   At.n = A->num_rows(); | 
 |   At.nz = -1; | 
 |   At.nzmax = A->num_nonzeros(); | 
 |   At.p = A->mutable_rows(); | 
 |   At.i = A->mutable_cols(); | 
 |   At.x = A->mutable_values(); | 
 |   return At; | 
 | } | 
 |  | 
 | cs_di* CXSparse::CreateSparseMatrix(TripletSparseMatrix* tsm) { | 
 |   cs_di_sparse tsm_wrapper; | 
 |   tsm_wrapper.nzmax = tsm->num_nonzeros();; | 
 |   tsm_wrapper.nz = tsm->num_nonzeros();; | 
 |   tsm_wrapper.m = tsm->num_rows(); | 
 |   tsm_wrapper.n = tsm->num_cols(); | 
 |   tsm_wrapper.p = tsm->mutable_cols(); | 
 |   tsm_wrapper.i = tsm->mutable_rows(); | 
 |   tsm_wrapper.x = tsm->mutable_values(); | 
 |  | 
 |   return cs_compress(&tsm_wrapper); | 
 | } | 
 |  | 
 | void CXSparse::Free(cs_di* sparse_matrix) { | 
 |   cs_di_spfree(sparse_matrix); | 
 | } | 
 |  | 
 | void CXSparse::Free(cs_dis* symbolic_factorization) { | 
 |   cs_di_sfree(symbolic_factorization); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_NO_CXSPARSE |