| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Generic loop for line search based optimization algorithms. | 
 | // | 
 | // This is primarily inpsired by the minFunc packaged written by Mark | 
 | // Schmidt. | 
 | // | 
 | // http://www.di.ens.fr/~mschmidt/Software/minFunc.html | 
 | // | 
 | // For details on the theory and implementation see "Numerical | 
 | // Optimization" by Nocedal & Wright. | 
 |  | 
 | #include "ceres/line_search_minimizer.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstdlib> | 
 | #include <cmath> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/array_utils.h" | 
 | #include "ceres/evaluator.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/line_search.h" | 
 | #include "ceres/line_search_direction.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/wall_time.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 | // Small constant for various floating point issues. | 
 | // TODO(sameeragarwal): Change to a better name if this has only one | 
 | // use. | 
 | const double kEpsilon = 1e-12; | 
 |  | 
 | bool Evaluate(Evaluator* evaluator, | 
 |               const Vector& x, | 
 |               LineSearchMinimizer::State* state) { | 
 |   const bool status = evaluator->Evaluate(x.data(), | 
 |                                           &(state->cost), | 
 |                                           NULL, | 
 |                                           state->gradient.data(), | 
 |                                           NULL); | 
 |   if (status) { | 
 |     state->gradient_squared_norm = state->gradient.squaredNorm(); | 
 |     state->gradient_max_norm = state->gradient.lpNorm<Eigen::Infinity>(); | 
 |   } | 
 |  | 
 |   return status; | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | void LineSearchMinimizer::Minimize(const Minimizer::Options& options, | 
 |                                    double* parameters, | 
 |                                    Solver::Summary* summary) { | 
 |   double start_time = WallTimeInSeconds(); | 
 |   double iteration_start_time =  start_time; | 
 |  | 
 |   Evaluator* evaluator = CHECK_NOTNULL(options.evaluator); | 
 |   const int num_parameters = evaluator->NumParameters(); | 
 |   const int num_effective_parameters = evaluator->NumEffectiveParameters(); | 
 |  | 
 |   summary->termination_type = NO_CONVERGENCE; | 
 |   summary->num_successful_steps = 0; | 
 |   summary->num_unsuccessful_steps = 0; | 
 |  | 
 |   VectorRef x(parameters, num_parameters); | 
 |  | 
 |   State current_state(num_parameters, num_effective_parameters); | 
 |   State previous_state(num_parameters, num_effective_parameters); | 
 |  | 
 |   Vector delta(num_effective_parameters); | 
 |   Vector x_plus_delta(num_parameters); | 
 |  | 
 |   IterationSummary iteration_summary; | 
 |   iteration_summary.iteration = 0; | 
 |   iteration_summary.step_is_valid = false; | 
 |   iteration_summary.step_is_successful = false; | 
 |   iteration_summary.cost_change = 0.0; | 
 |   iteration_summary.gradient_max_norm = 0.0; | 
 |   iteration_summary.step_norm = 0.0; | 
 |   iteration_summary.linear_solver_iterations = 0; | 
 |   iteration_summary.step_solver_time_in_seconds = 0; | 
 |  | 
 |   // Do initial cost and Jacobian evaluation. | 
 |   if (!Evaluate(evaluator, x, ¤t_state)) { | 
 |     LOG(WARNING) << "Terminating: Cost and gradient evaluation failed."; | 
 |     summary->termination_type = NUMERICAL_FAILURE; | 
 |     return; | 
 |   } | 
 |  | 
 |   summary->initial_cost = current_state.cost + summary->fixed_cost; | 
 |   iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
 |  | 
 |   iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
 |  | 
 |   // The initial gradient max_norm is bounded from below so that we do | 
 |   // not divide by zero. | 
 |   const double initial_gradient_max_norm = | 
 |       max(iteration_summary.gradient_max_norm, kEpsilon); | 
 |   const double absolute_gradient_tolerance = | 
 |       options.gradient_tolerance * initial_gradient_max_norm; | 
 |  | 
 |   if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { | 
 |     summary->termination_type = GRADIENT_TOLERANCE; | 
 |     VLOG(1) << "Terminating: Gradient tolerance reached." | 
 |             << "Relative gradient max norm: " | 
 |             << iteration_summary.gradient_max_norm / initial_gradient_max_norm | 
 |             << " <= " << options.gradient_tolerance; | 
 |     return; | 
 |   } | 
 |  | 
 |   iteration_summary.iteration_time_in_seconds = | 
 |       WallTimeInSeconds() - iteration_start_time; | 
 |   iteration_summary.cumulative_time_in_seconds = | 
 |       WallTimeInSeconds() - start_time | 
 |       + summary->preprocessor_time_in_seconds; | 
 |   summary->iterations.push_back(iteration_summary); | 
 |  | 
 |   LineSearchDirection::Options line_search_direction_options; | 
 |   line_search_direction_options.num_parameters = num_effective_parameters; | 
 |   line_search_direction_options.type = options.line_search_direction_type; | 
 |   line_search_direction_options.nonlinear_conjugate_gradient_type = | 
 |       options.nonlinear_conjugate_gradient_type; | 
 |   line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank; | 
 |   scoped_ptr<LineSearchDirection> line_search_direction( | 
 |       LineSearchDirection::Create(line_search_direction_options)); | 
 |  | 
 |   LineSearchFunction line_search_function(evaluator); | 
 |   LineSearch::Options line_search_options; | 
 |   line_search_options.function = &line_search_function; | 
 |  | 
 |   // TODO(sameeragarwal): Make this parameterizable over different | 
 |   // line searches. | 
 |   ArmijoLineSearch line_search; | 
 |   LineSearch::Summary line_search_summary; | 
 |  | 
 |   while (true) { | 
 |     if (!RunCallbacks(options.callbacks, iteration_summary, summary)) { | 
 |       return; | 
 |     } | 
 |  | 
 |     iteration_start_time = WallTimeInSeconds(); | 
 |     if (iteration_summary.iteration >= options.max_num_iterations) { | 
 |       summary->termination_type = NO_CONVERGENCE; | 
 |       VLOG(1) << "Terminating: Maximum number of iterations reached."; | 
 |       break; | 
 |     } | 
 |  | 
 |     const double total_solver_time = iteration_start_time - start_time + | 
 |         summary->preprocessor_time_in_seconds; | 
 |     if (total_solver_time >= options.max_solver_time_in_seconds) { | 
 |       summary->termination_type = NO_CONVERGENCE; | 
 |       VLOG(1) << "Terminating: Maximum solver time reached."; | 
 |       break; | 
 |     } | 
 |  | 
 |     iteration_summary = IterationSummary(); | 
 |     iteration_summary.iteration = summary->iterations.back().iteration + 1; | 
 |  | 
 |     bool line_search_status = true; | 
 |     if (iteration_summary.iteration == 1) { | 
 |       current_state.search_direction = -current_state.gradient; | 
 |     } else { | 
 |       line_search_status = line_search_direction->NextDirection( | 
 |           previous_state, | 
 |           current_state, | 
 |           ¤t_state.search_direction); | 
 |     } | 
 |  | 
 |     if (!line_search_status) { | 
 |       LOG(WARNING) << "Line search direction computation failed. " | 
 |           "Resorting to steepest descent."; | 
 |       current_state.search_direction = -current_state.gradient; | 
 |     } | 
 |  | 
 |     line_search_function.Init(x, current_state.search_direction); | 
 |     current_state.directional_derivative = | 
 |         current_state.gradient.dot(current_state.search_direction); | 
 |  | 
 |     // TODO(sameeragarwal): Refactor this into its own object and add | 
 |     // explanations for the various choices. | 
 |     const double initial_step_size = (iteration_summary.iteration == 1) | 
 |         ? min(1.0, 1.0 / current_state.gradient_max_norm) | 
 |         : min(1.0, 2.0 * (current_state.cost - previous_state.cost) / | 
 |               current_state.directional_derivative); | 
 |  | 
 |     line_search.Search(line_search_options, | 
 |                        initial_step_size, | 
 |                        current_state.cost, | 
 |                        current_state.directional_derivative, | 
 |                        &line_search_summary); | 
 |  | 
 |     current_state.step_size = line_search_summary.optimal_step_size; | 
 |     delta = current_state.step_size * current_state.search_direction; | 
 |  | 
 |     previous_state = current_state; | 
 |  | 
 |     // TODO(sameeragarwal): Collect stats. | 
 |     if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data()) || | 
 |         !Evaluate(evaluator, x_plus_delta, ¤t_state)) { | 
 |       LOG(WARNING) << "Evaluation failed."; | 
 |     } else { | 
 |       x = x_plus_delta; | 
 |     } | 
 |  | 
 |     iteration_summary.gradient_max_norm = current_state.gradient_max_norm; | 
 |     if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { | 
 |       summary->termination_type = GRADIENT_TOLERANCE; | 
 |       VLOG(1) << "Terminating: Gradient tolerance reached." | 
 |               << "Relative gradient max norm: " | 
 |               << iteration_summary.gradient_max_norm / initial_gradient_max_norm | 
 |               << " <= " << options.gradient_tolerance; | 
 |       break; | 
 |     } | 
 |  | 
 |     iteration_summary.cost_change = previous_state.cost - current_state.cost; | 
 |     const double absolute_function_tolerance = | 
 |         options.function_tolerance * previous_state.cost; | 
 |     if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { | 
 |       VLOG(1) << "Terminating. Function tolerance reached. " | 
 |               << "|cost_change|/cost: " | 
 |               << fabs(iteration_summary.cost_change) / previous_state.cost | 
 |               << " <= " << options.function_tolerance; | 
 |       summary->termination_type = FUNCTION_TOLERANCE; | 
 |       return; | 
 |     } | 
 |  | 
 |     iteration_summary.cost = current_state.cost + summary->fixed_cost; | 
 |     iteration_summary.step_norm = delta.norm(); | 
 |     iteration_summary.step_is_valid = true; | 
 |     iteration_summary.step_is_successful = true; | 
 |     iteration_summary.step_norm = delta.norm(); | 
 |     iteration_summary.step_size =  current_state.step_size; | 
 |     iteration_summary.line_search_function_evaluations = | 
 |         line_search_summary.num_evaluations; | 
 |     iteration_summary.iteration_time_in_seconds = | 
 |         WallTimeInSeconds() - iteration_start_time; | 
 |     iteration_summary.cumulative_time_in_seconds = | 
 |         WallTimeInSeconds() - start_time | 
 |         + summary->preprocessor_time_in_seconds; | 
 |  | 
 |     summary->iterations.push_back(iteration_summary); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |