|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/levenberg_marquardt_strategy.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  |  | 
|  | #include "Eigen/Core" | 
|  | #include "ceres/array_utils.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | LevenbergMarquardtStrategy::LevenbergMarquardtStrategy( | 
|  | const TrustRegionStrategy::Options& options) | 
|  | : linear_solver_(options.linear_solver), | 
|  | radius_(options.initial_radius), | 
|  | max_radius_(options.max_radius), | 
|  | min_diagonal_(options.min_lm_diagonal), | 
|  | max_diagonal_(options.max_lm_diagonal), | 
|  | decrease_factor_(2.0), | 
|  | reuse_diagonal_(false) { | 
|  | CHECK(linear_solver_ != nullptr); | 
|  | CHECK_GT(min_diagonal_, 0.0); | 
|  | CHECK_LE(min_diagonal_, max_diagonal_); | 
|  | CHECK_GT(max_radius_, 0.0); | 
|  | } | 
|  |  | 
|  | LevenbergMarquardtStrategy::~LevenbergMarquardtStrategy() = default; | 
|  |  | 
|  | TrustRegionStrategy::Summary LevenbergMarquardtStrategy::ComputeStep( | 
|  | const TrustRegionStrategy::PerSolveOptions& per_solve_options, | 
|  | SparseMatrix* jacobian, | 
|  | const double* residuals, | 
|  | double* step) { | 
|  | CHECK(jacobian != nullptr); | 
|  | CHECK(residuals != nullptr); | 
|  | CHECK(step != nullptr); | 
|  |  | 
|  | const int num_parameters = jacobian->num_cols(); | 
|  | if (!reuse_diagonal_) { | 
|  | if (diagonal_.rows() != num_parameters) { | 
|  | diagonal_.resize(num_parameters, 1); | 
|  | } | 
|  |  | 
|  | jacobian->SquaredColumnNorm(diagonal_.data()); | 
|  | for (int i = 0; i < num_parameters; ++i) { | 
|  | diagonal_[i] = | 
|  | std::min(std::max(diagonal_[i], min_diagonal_), max_diagonal_); | 
|  | } | 
|  | } | 
|  |  | 
|  | lm_diagonal_ = (diagonal_ / radius_).array().sqrt(); | 
|  |  | 
|  | LinearSolver::PerSolveOptions solve_options; | 
|  | solve_options.D = lm_diagonal_.data(); | 
|  | solve_options.q_tolerance = per_solve_options.eta; | 
|  | // Disable r_tolerance checking. Since we only care about | 
|  | // termination via the q_tolerance. As Nash and Sofer show, | 
|  | // r_tolerance based termination is essentially useless in | 
|  | // Truncated Newton methods. | 
|  | solve_options.r_tolerance = -1.0; | 
|  |  | 
|  | // Invalidate the output array lm_step, so that we can detect if | 
|  | // the linear solver generated numerical garbage.  This is known | 
|  | // to happen for the DENSE_QR and then DENSE_SCHUR solver when | 
|  | // the Jacobin is severely rank deficient and mu is too small. | 
|  | InvalidateArray(num_parameters, step); | 
|  |  | 
|  | // Instead of solving Jx = -r, solve Jy = r. | 
|  | // Then x can be found as x = -y, but the inputs jacobian and residuals | 
|  | // do not need to be modified. | 
|  | LinearSolver::Summary linear_solver_summary = | 
|  | linear_solver_->Solve(jacobian, residuals, solve_options, step); | 
|  |  | 
|  | if (linear_solver_summary.termination_type == | 
|  | LinearSolverTerminationType::FATAL_ERROR) { | 
|  | LOG(WARNING) << "Linear solver fatal error: " | 
|  | << linear_solver_summary.message; | 
|  | } else if (linear_solver_summary.termination_type == | 
|  | LinearSolverTerminationType::FAILURE) { | 
|  | LOG(WARNING) << "Linear solver failure. Failed to compute a step: " | 
|  | << linear_solver_summary.message; | 
|  | } else if (!IsArrayValid(num_parameters, step)) { | 
|  | LOG(WARNING) << "Linear solver failure. Failed to compute a finite step."; | 
|  | linear_solver_summary.termination_type = | 
|  | LinearSolverTerminationType::FAILURE; | 
|  | } else { | 
|  | VectorRef(step, num_parameters) *= -1.0; | 
|  | } | 
|  | reuse_diagonal_ = true; | 
|  |  | 
|  | if (per_solve_options.dump_format_type == CONSOLE || | 
|  | (per_solve_options.dump_format_type != CONSOLE && | 
|  | !per_solve_options.dump_filename_base.empty())) { | 
|  | if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base, | 
|  | per_solve_options.dump_format_type, | 
|  | jacobian, | 
|  | solve_options.D, | 
|  | residuals, | 
|  | step, | 
|  | 0)) { | 
|  | LOG(ERROR) << "Unable to dump trust region problem." | 
|  | << " Filename base: " << per_solve_options.dump_filename_base; | 
|  | } | 
|  | } | 
|  |  | 
|  | TrustRegionStrategy::Summary summary; | 
|  | summary.residual_norm = linear_solver_summary.residual_norm; | 
|  | summary.num_iterations = linear_solver_summary.num_iterations; | 
|  | summary.termination_type = linear_solver_summary.termination_type; | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void LevenbergMarquardtStrategy::StepAccepted(double step_quality) { | 
|  | CHECK_GT(step_quality, 0.0); | 
|  | radius_ = | 
|  | radius_ / std::max(1.0 / 3.0, 1.0 - pow(2.0 * step_quality - 1.0, 3)); | 
|  | radius_ = std::min(max_radius_, radius_); | 
|  | decrease_factor_ = 2.0; | 
|  | reuse_diagonal_ = false; | 
|  | } | 
|  |  | 
|  | void LevenbergMarquardtStrategy::StepRejected(double step_quality) { | 
|  | radius_ = radius_ / decrease_factor_; | 
|  | decrease_factor_ *= 2.0; | 
|  | reuse_diagonal_ = true; | 
|  | } | 
|  |  | 
|  | double LevenbergMarquardtStrategy::Radius() const { return radius_; } | 
|  |  | 
|  | }  // namespace ceres::internal |