| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | // | 
 | // The ProgramEvaluator runs the cost functions contained in each residual block | 
 | // and stores the result into a jacobian. The particular type of jacobian is | 
 | // abstracted out using two template parameters: | 
 | // | 
 | //   - An "EvaluatePreparer" that is responsible for creating the array with | 
 | //     pointers to the jacobian blocks where the cost function evaluates to. | 
 | //   - A "JacobianWriter" that is responsible for storing the resulting | 
 | //     jacobian blocks in the passed sparse matrix. | 
 | // | 
 | // This abstraction affords an efficient evaluator implementation while still | 
 | // supporting writing to multiple sparse matrix formats. For example, when the | 
 | // ProgramEvaluator is parameterized for writing to block sparse matrices, the | 
 | // residual jacobians are written directly into their final position in the | 
 | // block sparse matrix by the user's CostFunction; there is no copying. | 
 | // | 
 | // The evaluation is threaded with C++ threads. | 
 | // | 
 | // The EvaluatePreparer and JacobianWriter interfaces are as follows: | 
 | // | 
 | //   class EvaluatePreparer { | 
 | //     // Prepare the jacobians array for use as the destination of a call to | 
 | //     // a cost function's evaluate method. | 
 | //     void Prepare(const ResidualBlock* residual_block, | 
 | //                  int residual_block_index, | 
 | //                  SparseMatrix* jacobian, | 
 | //                  double** jacobians); | 
 | //   } | 
 | // | 
 | //   class JacobianWriter { | 
 | //     // Create a jacobian that this writer can write. Same as | 
 | //     // Evaluator::CreateJacobian. | 
 | //     std::unique_ptr<SparseMatrix> CreateJacobian() const; | 
 | // | 
 | //     // Create num_threads evaluate preparers.Resulting preparers are valid | 
 | //     // while *this is. | 
 | // | 
 | //     std::unique_ptr<EvaluatePreparer[]> CreateEvaluatePreparers( | 
 | //                                           int num_threads); | 
 | // | 
 | //     // Write the block jacobians from a residual block evaluation to the | 
 | //     // larger sparse jacobian. | 
 | //     void Write(int residual_id, | 
 | //                int residual_offset, | 
 | //                double** jacobians, | 
 | //                SparseMatrix* jacobian); | 
 | //   } | 
 | // | 
 | // Note: The ProgramEvaluator is not thread safe, since internally it maintains | 
 | // some per-thread scratch space. | 
 |  | 
 | #ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_ | 
 | #define CERES_INTERNAL_PROGRAM_EVALUATOR_H_ | 
 |  | 
 | // This include must come before any #ifndef check on Ceres compile options. | 
 | // clang-format off | 
 | #include "ceres/internal/config.h" | 
 | // clang-format on | 
 |  | 
 | #include <atomic> | 
 | #include <map> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/evaluation_callback.h" | 
 | #include "ceres/execution_summary.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/parallel_for.h" | 
 | #include "ceres/parallel_vector_ops.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/small_blas.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | struct NullJacobianFinalizer { | 
 |   void operator()(SparseMatrix* /*jacobian*/, int /*num_parameters*/) {} | 
 | }; | 
 |  | 
 | template <typename EvaluatePreparer, | 
 |           typename JacobianWriter, | 
 |           typename JacobianFinalizer = NullJacobianFinalizer> | 
 | class ProgramEvaluator final : public Evaluator { | 
 |  public: | 
 |   ProgramEvaluator(const Evaluator::Options& options, Program* program) | 
 |       : options_(options), | 
 |         program_(program), | 
 |         jacobian_writer_(options, program), | 
 |         evaluate_preparers_(std::move( | 
 |             jacobian_writer_.CreateEvaluatePreparers(options.num_threads))), | 
 |         num_parameters_(program->NumEffectiveParameters()) { | 
 |     BuildResidualLayout(*program, &residual_layout_); | 
 |     evaluate_scratch_ = std::move(CreateEvaluatorScratch( | 
 |         *program, static_cast<unsigned>(options.num_threads))); | 
 |   } | 
 |  | 
 |   // Implementation of Evaluator interface. | 
 |   std::unique_ptr<SparseMatrix> CreateJacobian() const final { | 
 |     return jacobian_writer_.CreateJacobian(); | 
 |   } | 
 |  | 
 |   bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options, | 
 |                 const double* state, | 
 |                 double* cost, | 
 |                 double* residuals, | 
 |                 double* gradient, | 
 |                 SparseMatrix* jacobian) final { | 
 |     ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_); | 
 |     ScopedExecutionTimer call_type_timer( | 
 |         gradient == nullptr && jacobian == nullptr ? "Evaluator::Residual" | 
 |                                                    : "Evaluator::Jacobian", | 
 |         &execution_summary_); | 
 |  | 
 |     // The parameters are stateful, so set the state before evaluating. | 
 |     if (!program_->StateVectorToParameterBlocks(state)) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Notify the user about a new evaluation point if they are interested. | 
 |     if (options_.evaluation_callback != nullptr) { | 
 |       program_->CopyParameterBlockStateToUserState(); | 
 |       options_.evaluation_callback->PrepareForEvaluation( | 
 |           /*jacobians=*/(gradient != nullptr || jacobian != nullptr), | 
 |           evaluate_options.new_evaluation_point); | 
 |     } | 
 |  | 
 |     if (residuals != nullptr) { | 
 |       ParallelSetZero(options_.context, | 
 |                       options_.num_threads, | 
 |                       residuals, | 
 |                       program_->NumResiduals()); | 
 |     } | 
 |  | 
 |     if (jacobian != nullptr) { | 
 |       jacobian->SetZero(options_.context, options_.num_threads); | 
 |     } | 
 |  | 
 |     // Each thread gets it's own cost and evaluate scratch space. | 
 |     for (int i = 0; i < options_.num_threads; ++i) { | 
 |       evaluate_scratch_[i].cost = 0.0; | 
 |       if (gradient != nullptr) { | 
 |         ParallelSetZero(options_.context, | 
 |                         options_.num_threads, | 
 |                         evaluate_scratch_[i].gradient.get(), | 
 |                         num_parameters_); | 
 |       } | 
 |     } | 
 |  | 
 |     const int num_residual_blocks = program_->NumResidualBlocks(); | 
 |     // This bool is used to disable the loop if an error is encountered without | 
 |     // breaking out of it. The remaining loop iterations are still run, but with | 
 |     // an empty body, and so will finish quickly. | 
 |     std::atomic_bool abort(false); | 
 |     ParallelFor( | 
 |         options_.context, | 
 |         0, | 
 |         num_residual_blocks, | 
 |         options_.num_threads, | 
 |         [&](int thread_id, int i) { | 
 |           if (abort) { | 
 |             return; | 
 |           } | 
 |  | 
 |           EvaluatePreparer* preparer = &evaluate_preparers_[thread_id]; | 
 |           EvaluateScratch* scratch = &evaluate_scratch_[thread_id]; | 
 |  | 
 |           // Prepare block residuals if requested. | 
 |           const ResidualBlock* residual_block = program_->residual_blocks()[i]; | 
 |           double* block_residuals = nullptr; | 
 |           if (residuals != nullptr) { | 
 |             block_residuals = residuals + residual_layout_[i]; | 
 |           } else if (gradient != nullptr) { | 
 |             block_residuals = scratch->residual_block_residuals.get(); | 
 |           } | 
 |  | 
 |           // Prepare block jacobians if requested. | 
 |           double** block_jacobians = nullptr; | 
 |           if (jacobian != nullptr || gradient != nullptr) { | 
 |             preparer->Prepare(residual_block, | 
 |                               i, | 
 |                               jacobian, | 
 |                               scratch->jacobian_block_ptrs.get()); | 
 |             block_jacobians = scratch->jacobian_block_ptrs.get(); | 
 |           } | 
 |  | 
 |           // Evaluate the cost, residuals, and jacobians. | 
 |           double block_cost; | 
 |           if (!residual_block->Evaluate( | 
 |                   evaluate_options.apply_loss_function, | 
 |                   &block_cost, | 
 |                   block_residuals, | 
 |                   block_jacobians, | 
 |                   scratch->residual_block_evaluate_scratch.get())) { | 
 |             abort = true; | 
 |             return; | 
 |           } | 
 |  | 
 |           scratch->cost += block_cost; | 
 |  | 
 |           // Store the jacobians, if they were requested. | 
 |           if (jacobian != nullptr) { | 
 |             jacobian_writer_.Write( | 
 |                 i, residual_layout_[i], block_jacobians, jacobian); | 
 |           } | 
 |  | 
 |           // Compute and store the gradient, if it was requested. | 
 |           if (gradient != nullptr) { | 
 |             int num_residuals = residual_block->NumResiduals(); | 
 |             int num_parameter_blocks = residual_block->NumParameterBlocks(); | 
 |             for (int j = 0; j < num_parameter_blocks; ++j) { | 
 |               const ParameterBlock* parameter_block = | 
 |                   residual_block->parameter_blocks()[j]; | 
 |               if (parameter_block->IsConstant()) { | 
 |                 continue; | 
 |               } | 
 |  | 
 |               MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |                   block_jacobians[j], | 
 |                   num_residuals, | 
 |                   parameter_block->TangentSize(), | 
 |                   block_residuals, | 
 |                   scratch->gradient.get() + parameter_block->delta_offset()); | 
 |             } | 
 |           } | 
 |         }); | 
 |  | 
 |     if (abort) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Sum the cost and gradient (if requested) from each thread. | 
 |     (*cost) = 0.0; | 
 |     if (gradient != nullptr) { | 
 |       auto gradient_vector = VectorRef(gradient, num_parameters_); | 
 |       ParallelSetZero(options_.context, options_.num_threads, gradient_vector); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < options_.num_threads; ++i) { | 
 |       (*cost) += evaluate_scratch_[i].cost; | 
 |       if (gradient != nullptr) { | 
 |         auto gradient_vector = VectorRef(gradient, num_parameters_); | 
 |         ParallelAssign( | 
 |             options_.context, | 
 |             options_.num_threads, | 
 |             gradient_vector, | 
 |             gradient_vector + VectorRef(evaluate_scratch_[i].gradient.get(), | 
 |                                         num_parameters_)); | 
 |       } | 
 |     } | 
 |  | 
 |     // It is possible that after accumulation that the cost has become infinite | 
 |     // or a nan. | 
 |     if (!std::isfinite(*cost)) { | 
 |       LOG(ERROR) << "Accumulated cost = " << *cost | 
 |                  << " is not a finite number. Evaluation failed."; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Finalize the Jacobian if it is available. | 
 |     // `num_parameters` is passed to the finalizer so that additional | 
 |     // storage can be reserved for additional diagonal elements if | 
 |     // necessary. | 
 |     if (jacobian != nullptr) { | 
 |       JacobianFinalizer f; | 
 |       f(jacobian, num_parameters_); | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool Plus(const double* state, | 
 |             const double* delta, | 
 |             double* state_plus_delta) const final { | 
 |     return program_->Plus( | 
 |         state, delta, state_plus_delta, options_.context, options_.num_threads); | 
 |   } | 
 |  | 
 |   int NumParameters() const final { return program_->NumParameters(); } | 
 |   int NumEffectiveParameters() const final { | 
 |     return program_->NumEffectiveParameters(); | 
 |   } | 
 |  | 
 |   int NumResiduals() const final { return program_->NumResiduals(); } | 
 |  | 
 |   std::map<std::string, CallStatistics> Statistics() const final { | 
 |     return execution_summary_.statistics(); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Per-thread scratch space needed to evaluate and store each residual block. | 
 |   struct EvaluateScratch { | 
 |     void Init(int max_parameters_per_residual_block, | 
 |               int max_scratch_doubles_needed_for_evaluate, | 
 |               int max_residuals_per_residual_block, | 
 |               int num_parameters) { | 
 |       residual_block_evaluate_scratch = | 
 |           std::make_unique<double[]>(max_scratch_doubles_needed_for_evaluate); | 
 |       gradient = std::make_unique<double[]>(num_parameters); | 
 |       VectorRef(gradient.get(), num_parameters).setZero(); | 
 |       residual_block_residuals = | 
 |           std::make_unique<double[]>(max_residuals_per_residual_block); | 
 |       jacobian_block_ptrs = | 
 |           std::make_unique<double*[]>(max_parameters_per_residual_block); | 
 |     } | 
 |  | 
 |     double cost; | 
 |     std::unique_ptr<double[]> residual_block_evaluate_scratch; | 
 |     // The gradient on the manifold. | 
 |     std::unique_ptr<double[]> gradient; | 
 |     // Enough space to store the residual for the largest residual block. | 
 |     std::unique_ptr<double[]> residual_block_residuals; | 
 |     std::unique_ptr<double*[]> jacobian_block_ptrs; | 
 |   }; | 
 |  | 
 |   static void BuildResidualLayout(const Program& program, | 
 |                                   std::vector<int>* residual_layout) { | 
 |     const std::vector<ResidualBlock*>& residual_blocks = | 
 |         program.residual_blocks(); | 
 |     residual_layout->resize(program.NumResidualBlocks()); | 
 |     int residual_pos = 0; | 
 |     for (int i = 0; i < residual_blocks.size(); ++i) { | 
 |       const int num_residuals = residual_blocks[i]->NumResiduals(); | 
 |       (*residual_layout)[i] = residual_pos; | 
 |       residual_pos += num_residuals; | 
 |     } | 
 |   } | 
 |  | 
 |   // Create scratch space for each thread evaluating the program. | 
 |   static std::unique_ptr<EvaluateScratch[]> CreateEvaluatorScratch( | 
 |       const Program& program, unsigned num_threads) { | 
 |     int max_parameters_per_residual_block = | 
 |         program.MaxParametersPerResidualBlock(); | 
 |     int max_scratch_doubles_needed_for_evaluate = | 
 |         program.MaxScratchDoublesNeededForEvaluate(); | 
 |     int max_residuals_per_residual_block = | 
 |         program.MaxResidualsPerResidualBlock(); | 
 |     int num_parameters = program.NumEffectiveParameters(); | 
 |  | 
 |     auto evaluate_scratch = std::make_unique<EvaluateScratch[]>(num_threads); | 
 |     for (int i = 0; i < num_threads; i++) { | 
 |       evaluate_scratch[i].Init(max_parameters_per_residual_block, | 
 |                                max_scratch_doubles_needed_for_evaluate, | 
 |                                max_residuals_per_residual_block, | 
 |                                num_parameters); | 
 |     } | 
 |     return evaluate_scratch; | 
 |   } | 
 |  | 
 |   Evaluator::Options options_; | 
 |   Program* program_; | 
 |   JacobianWriter jacobian_writer_; | 
 |   std::unique_ptr<EvaluatePreparer[]> evaluate_preparers_; | 
 |   std::unique_ptr<EvaluateScratch[]> evaluate_scratch_; | 
 |   std::vector<int> residual_layout_; | 
 |   int num_parameters_; | 
 |   ::ceres::internal::ExecutionSummary execution_summary_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_PROGRAM_EVALUATOR_H_ |