|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/inner_product_computer.h" | 
|  |  | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  | #include <random> | 
|  |  | 
|  | #include "Eigen/SparseCore" | 
|  | #include "absl/log/log.h" | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | #define COMPUTE_AND_COMPARE                                                   \ | 
|  | {                                                                           \ | 
|  | inner_product_computer->Compute();                                        \ | 
|  | CompressedRowSparseMatrix* actual_product_crsm =                          \ | 
|  | inner_product_computer->mutable_result();                             \ | 
|  | Matrix actual_inner_product =                                             \ | 
|  | Eigen::Map<Eigen::SparseMatrix<double, Eigen::ColMajor>>(             \ | 
|  | actual_product_crsm->num_rows(),                                  \ | 
|  | actual_product_crsm->num_rows(),                                  \ | 
|  | actual_product_crsm->num_nonzeros(),                              \ | 
|  | actual_product_crsm->mutable_rows(),                              \ | 
|  | actual_product_crsm->mutable_cols(),                              \ | 
|  | actual_product_crsm->mutable_values());                           \ | 
|  | EXPECT_EQ(actual_inner_product.rows(), actual_inner_product.cols());      \ | 
|  | EXPECT_EQ(expected_inner_product.rows(), expected_inner_product.cols());  \ | 
|  | EXPECT_EQ(actual_inner_product.rows(), expected_inner_product.rows());    \ | 
|  | Matrix expected_t, actual_t;                                              \ | 
|  | if (actual_product_crsm->storage_type() ==                                \ | 
|  | CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR) {           \ | 
|  | expected_t = expected_inner_product.triangularView<Eigen::Upper>();     \ | 
|  | actual_t = actual_inner_product.triangularView<Eigen::Upper>();         \ | 
|  | } else {                                                                  \ | 
|  | expected_t = expected_inner_product.triangularView<Eigen::Lower>();     \ | 
|  | actual_t = actual_inner_product.triangularView<Eigen::Lower>();         \ | 
|  | }                                                                         \ | 
|  | EXPECT_LE((expected_t - actual_t).norm(),                                 \ | 
|  | 100 * std::numeric_limits<double>::epsilon() * actual_t.norm()) \ | 
|  | << "expected: \n"                                                     \ | 
|  | << expected_t << "\nactual: \n"                                       \ | 
|  | << actual_t;                                                          \ | 
|  | } | 
|  |  | 
|  | TEST(InnerProductComputer, NormalOperation) { | 
|  | const int kMaxNumRowBlocks = 10; | 
|  | const int kMaxNumColBlocks = 10; | 
|  | const int kNumTrials = 10; | 
|  | std::mt19937 prng; | 
|  | std::uniform_real_distribution<double> distribution(0.01, 1.0); | 
|  |  | 
|  | // Create a random matrix, compute its outer product using Eigen and | 
|  | // ComputeOuterProduct. Convert both matrices to dense matrices and | 
|  | // compare their upper triangular parts. | 
|  | for (int num_row_blocks = 1; num_row_blocks < kMaxNumRowBlocks; | 
|  | ++num_row_blocks) { | 
|  | for (int num_col_blocks = 1; num_col_blocks < kMaxNumColBlocks; | 
|  | ++num_col_blocks) { | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | BlockSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_row_blocks = num_row_blocks; | 
|  | options.num_col_blocks = num_col_blocks; | 
|  | options.min_row_block_size = 1; | 
|  | options.max_row_block_size = 5; | 
|  | options.min_col_block_size = 1; | 
|  | options.max_col_block_size = 10; | 
|  | options.block_density = distribution(prng); | 
|  |  | 
|  | VLOG(2) << "num row blocks: " << options.num_row_blocks; | 
|  | VLOG(2) << "num col blocks: " << options.num_col_blocks; | 
|  | VLOG(2) << "min row block size: " << options.min_row_block_size; | 
|  | VLOG(2) << "max row block size: " << options.max_row_block_size; | 
|  | VLOG(2) << "min col block size: " << options.min_col_block_size; | 
|  | VLOG(2) << "max col block size: " << options.max_col_block_size; | 
|  | VLOG(2) << "block density: " << options.block_density; | 
|  |  | 
|  | std::unique_ptr<BlockSparseMatrix> random_matrix( | 
|  | BlockSparseMatrix::CreateRandomMatrix(options, prng)); | 
|  |  | 
|  | TripletSparseMatrix tsm(random_matrix->num_rows(), | 
|  | random_matrix->num_cols(), | 
|  | random_matrix->num_nonzeros()); | 
|  | random_matrix->ToTripletSparseMatrix(&tsm); | 
|  | std::vector<Eigen::Triplet<double>> triplets; | 
|  | for (int i = 0; i < tsm.num_nonzeros(); ++i) { | 
|  | triplets.emplace_back(tsm.rows()[i], tsm.cols()[i], tsm.values()[i]); | 
|  | } | 
|  | Eigen::SparseMatrix<double> eigen_random_matrix( | 
|  | random_matrix->num_rows(), random_matrix->num_cols()); | 
|  | eigen_random_matrix.setFromTriplets(triplets.begin(), triplets.end()); | 
|  | Matrix expected_inner_product = | 
|  | eigen_random_matrix.transpose() * eigen_random_matrix; | 
|  |  | 
|  | std::unique_ptr<InnerProductComputer> inner_product_computer; | 
|  |  | 
|  | inner_product_computer = InnerProductComputer::Create( | 
|  | *random_matrix, | 
|  | CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR); | 
|  | COMPUTE_AND_COMPARE; | 
|  | inner_product_computer = InnerProductComputer::Create( | 
|  | *random_matrix, | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR); | 
|  | COMPUTE_AND_COMPARE; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(InnerProductComputer, SubMatrix) { | 
|  | const int kNumRowBlocks = 10; | 
|  | const int kNumColBlocks = 20; | 
|  | const int kNumTrials = 5; | 
|  | std::mt19937 prng; | 
|  | std::uniform_real_distribution<double> distribution(0.01, 1.0); | 
|  |  | 
|  | // Create a random matrix, compute its outer product using Eigen and | 
|  | // ComputeInnerProductComputer. Convert both matrices to dense matrices and | 
|  | // compare their upper triangular parts. | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | BlockSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_row_blocks = kNumRowBlocks; | 
|  | options.num_col_blocks = kNumColBlocks; | 
|  | options.min_row_block_size = 1; | 
|  | options.max_row_block_size = 5; | 
|  | options.min_col_block_size = 1; | 
|  | options.max_col_block_size = 10; | 
|  | options.block_density = distribution(prng); | 
|  |  | 
|  | VLOG(2) << "num row blocks: " << options.num_row_blocks; | 
|  | VLOG(2) << "num col blocks: " << options.num_col_blocks; | 
|  | VLOG(2) << "min row block size: " << options.min_row_block_size; | 
|  | VLOG(2) << "max row block size: " << options.max_row_block_size; | 
|  | VLOG(2) << "min col block size: " << options.min_col_block_size; | 
|  | VLOG(2) << "max col block size: " << options.max_col_block_size; | 
|  | VLOG(2) << "block density: " << options.block_density; | 
|  |  | 
|  | std::unique_ptr<BlockSparseMatrix> random_matrix( | 
|  | BlockSparseMatrix::CreateRandomMatrix(options, prng)); | 
|  |  | 
|  | const std::vector<CompressedRow>& row_blocks = | 
|  | random_matrix->block_structure()->rows; | 
|  | const int num_row_blocks = row_blocks.size(); | 
|  |  | 
|  | for (int start_row_block = 0; start_row_block < num_row_blocks - 1; | 
|  | ++start_row_block) { | 
|  | for (int end_row_block = start_row_block + 1; | 
|  | end_row_block < num_row_blocks; | 
|  | ++end_row_block) { | 
|  | const int start_row = row_blocks[start_row_block].block.position; | 
|  | const int end_row = row_blocks[end_row_block].block.position; | 
|  |  | 
|  | TripletSparseMatrix tsm(random_matrix->num_rows(), | 
|  | random_matrix->num_cols(), | 
|  | random_matrix->num_nonzeros()); | 
|  | random_matrix->ToTripletSparseMatrix(&tsm); | 
|  | std::vector<Eigen::Triplet<double>> triplets; | 
|  | for (int i = 0; i < tsm.num_nonzeros(); ++i) { | 
|  | if (tsm.rows()[i] >= start_row && tsm.rows()[i] < end_row) { | 
|  | triplets.emplace_back( | 
|  | tsm.rows()[i], tsm.cols()[i], tsm.values()[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | Eigen::SparseMatrix<double> eigen_random_matrix( | 
|  | random_matrix->num_rows(), random_matrix->num_cols()); | 
|  | eigen_random_matrix.setFromTriplets(triplets.begin(), triplets.end()); | 
|  |  | 
|  | Matrix expected_inner_product = | 
|  | eigen_random_matrix.transpose() * eigen_random_matrix; | 
|  |  | 
|  | std::unique_ptr<InnerProductComputer> inner_product_computer; | 
|  | inner_product_computer = InnerProductComputer::Create( | 
|  | *random_matrix, | 
|  | start_row_block, | 
|  | end_row_block, | 
|  | CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR); | 
|  | COMPUTE_AND_COMPARE; | 
|  | inner_product_computer = InnerProductComputer::Create( | 
|  | *random_matrix, | 
|  | start_row_block, | 
|  | end_row_block, | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR); | 
|  | COMPUTE_AND_COMPARE; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef COMPUTE_AND_COMPARE | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |