blob: 87e00676d34348b063ae42993df2dae50eba5b3c [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2020 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: darius.rueckert@fau.de (Darius Rueckert)
#include <memory>
#include <random>
#include <utility>
#include "benchmark/benchmark.h"
#include "ceres/autodiff_benchmarks/brdf_cost_function.h"
#include "ceres/autodiff_benchmarks/constant_cost_function.h"
#include "ceres/autodiff_benchmarks/linear_cost_functions.h"
#include "ceres/autodiff_benchmarks/photometric_error.h"
#include "ceres/autodiff_benchmarks/relative_pose_error.h"
#include "ceres/autodiff_benchmarks/snavely_reprojection_error.h"
#include "ceres/ceres.h"
namespace ceres {
enum Dynamic { kNotDynamic, kDynamic };
// Transforms a static functor into a dynamic one.
template <typename CostFunctionType, int kNumParameterBlocks>
class ToDynamic {
public:
template <typename... _Args>
explicit ToDynamic(_Args&&... __args)
: cost_function_(std::forward<_Args>(__args)...) {}
template <typename T>
bool operator()(const T* const* parameters, T* residuals) const {
return Apply(
parameters, residuals, std::make_index_sequence<kNumParameterBlocks>());
}
private:
template <typename T, size_t... Indices>
bool Apply(const T* const* parameters,
T* residuals,
std::index_sequence<Indices...>) const {
return cost_function_(parameters[Indices]..., residuals);
}
CostFunctionType cost_function_;
};
template <int kParameterBlockSize>
static void BM_ConstantAnalytic(benchmark::State& state) {
constexpr int num_residuals = 1;
std::array<double, kParameterBlockSize> parameters_values;
std::iota(parameters_values.begin(), parameters_values.end(), 0);
double* parameters[] = {parameters_values.data()};
std::array<double, num_residuals> residuals;
std::array<double, num_residuals * kParameterBlockSize> jacobian_values;
double* jacobians[] = {jacobian_values.data()};
std::unique_ptr<ceres::CostFunction> cost_function(
new AnalyticConstantCostFunction<kParameterBlockSize>());
for (auto _ : state) {
cost_function->Evaluate(parameters, residuals.data(), jacobians);
}
}
// Helpers for CostFunctionFactory.
template <typename DynamicCostFunctionType>
void AddParameterBlocks(DynamicCostFunctionType*) {}
template <int HeadN, int... TailNs, typename DynamicCostFunctionType>
void AddParameterBlocks(DynamicCostFunctionType* dynamic_function) {
dynamic_function->AddParameterBlock(HeadN);
AddParameterBlocks<TailNs...>(dynamic_function);
}
// Creates an autodiff cost function wrapping `CostFunctor`, with
// `kNumResiduals` residuals and parameter blocks with sized `Ns..`.
// Depending on `kIsDynamic`, either a static or dynamic cost function is
// created.
// `args` are forwarded to the `CostFunctor` constructor.
template <Dynamic kIsDynamic>
struct CostFunctionFactory {};
template <>
struct CostFunctionFactory<kNotDynamic> {
template <typename CostFunctor,
int kNumResiduals,
int... Ns,
typename... Args>
static std::unique_ptr<ceres::CostFunction> Create(Args&&... args) {
return std::make_unique<
ceres::AutoDiffCostFunction<CostFunctor, kNumResiduals, Ns...>>(
new CostFunctor(std::forward<Args>(args)...));
}
};
template <>
struct CostFunctionFactory<kDynamic> {
template <typename CostFunctor,
int kNumResiduals,
int... Ns,
typename... Args>
static std::unique_ptr<ceres::CostFunction> Create(Args&&... args) {
constexpr const int kNumParameterBlocks = sizeof...(Ns);
auto dynamic_function = std::make_unique<ceres::DynamicAutoDiffCostFunction<
ToDynamic<CostFunctor, kNumParameterBlocks>>>(
new ToDynamic<CostFunctor, kNumParameterBlocks>(
std::forward<Args>(args)...));
dynamic_function->SetNumResiduals(kNumResiduals);
AddParameterBlocks<Ns...>(dynamic_function.get());
return dynamic_function;
}
};
template <int kParameterBlockSize, Dynamic kIsDynamic>
static void BM_ConstantAutodiff(benchmark::State& state) {
constexpr int num_residuals = 1;
std::array<double, kParameterBlockSize> parameters_values;
std::iota(parameters_values.begin(), parameters_values.end(), 0);
double* parameters[] = {parameters_values.data()};
std::array<double, num_residuals> residuals;
std::array<double, num_residuals * kParameterBlockSize> jacobian_values;
double* jacobians[] = {jacobian_values.data()};
std::unique_ptr<ceres::CostFunction> cost_function =
CostFunctionFactory<kIsDynamic>::
template Create<ConstantCostFunction<kParameterBlockSize>, 1, 1>();
for (auto _ : state) {
cost_function->Evaluate(parameters, residuals.data(), jacobians);
}
}
BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 1);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 1, kNotDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 1, kDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 10);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 10, kNotDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 10, kDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 20);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 20, kNotDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 20, kDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 30);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 30, kNotDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 30, kDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 40);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 40, kNotDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 40, kDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 50);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 50, kNotDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 50, kDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 60);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 60, kNotDynamic);
BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 60, kDynamic);
template <Dynamic kIsDynamic>
static void BM_Linear1AutoDiff(benchmark::State& state) {
double parameter_block1[] = {1.};
double* parameters[] = {parameter_block1};
double jacobian1[1];
double residuals[1];
double* jacobians[] = {jacobian1};
std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory<
kIsDynamic>::template Create<Linear1CostFunction, 1, 1>();
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK_TEMPLATE(BM_Linear1AutoDiff, kNotDynamic)->Arg(0)->Arg(1);
BENCHMARK_TEMPLATE(BM_Linear1AutoDiff, kDynamic)->Arg(0)->Arg(1);
template <Dynamic kIsDynamic>
static void BM_Linear10AutoDiff(benchmark::State& state) {
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
double* parameters[] = {parameter_block1};
double jacobian1[10 * 10];
double residuals[10];
double* jacobians[] = {jacobian1};
std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory<
kIsDynamic>::template Create<Linear10CostFunction, 10, 10>();
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK_TEMPLATE(BM_Linear10AutoDiff, kNotDynamic)->Arg(0)->Arg(1);
BENCHMARK_TEMPLATE(BM_Linear10AutoDiff, kDynamic)->Arg(0)->Arg(1);
// From the NIST problem collection.
struct Rat43CostFunctor {
Rat43CostFunctor(const double x, const double y) : x_(x), y_(y) {}
template <typename T>
inline bool operator()(const T* parameters, T* residuals) const {
const T& b1 = parameters[0];
const T& b2 = parameters[1];
const T& b3 = parameters[2];
const T& b4 = parameters[3];
residuals[0] = b1 * pow(1.0 + exp(b2 - b3 * x_), -1.0 / b4) - y_;
return true;
}
static constexpr int kNumParameterBlocks = 1;
private:
const double x_;
const double y_;
};
template <Dynamic kIsDynamic>
static void BM_Rat43AutoDiff(benchmark::State& state) {
double parameter_block1[] = {1., 2., 3., 4.};
double* parameters[] = {parameter_block1};
double jacobian1[] = {0.0, 0.0, 0.0, 0.0};
double residuals;
double* jacobians[] = {jacobian1};
const double x = 0.2;
const double y = 0.3;
std::unique_ptr<ceres::CostFunction> cost_function =
CostFunctionFactory<kIsDynamic>::template Create<Rat43CostFunctor, 1, 4>(
x, y);
for (auto _ : state) {
cost_function->Evaluate(
parameters, &residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK_TEMPLATE(BM_Rat43AutoDiff, kNotDynamic)->Arg(0)->Arg(1);
BENCHMARK_TEMPLATE(BM_Rat43AutoDiff, kDynamic)->Arg(0)->Arg(1);
template <Dynamic kIsDynamic>
static void BM_SnavelyReprojectionAutoDiff(benchmark::State& state) {
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9.};
double parameter_block2[] = {1., 2., 3.};
double* parameters[] = {parameter_block1, parameter_block2};
double jacobian1[2 * 9];
double jacobian2[2 * 3];
double residuals[2];
double* jacobians[] = {jacobian1, jacobian2};
const double x = 0.2;
const double y = 0.3;
std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory<
kIsDynamic>::template Create<SnavelyReprojectionError, 2, 9, 3>(x, y);
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK_TEMPLATE(BM_SnavelyReprojectionAutoDiff, kNotDynamic)->Arg(0)->Arg(1);
BENCHMARK_TEMPLATE(BM_SnavelyReprojectionAutoDiff, kDynamic)->Arg(0)->Arg(1);
template <Dynamic kIsDynamic>
static void BM_PhotometricAutoDiff(benchmark::State& state) {
constexpr int PATCH_SIZE = 8;
using FunctorType = PhotometricError<PATCH_SIZE>;
using ImageType = Eigen::Matrix<uint8_t, 128, 128, Eigen::RowMajor>;
// Prepare parameter / residual / jacobian blocks.
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.};
double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1};
double parameter_block3[] = {1.};
double* parameters[] = {parameter_block1, parameter_block2, parameter_block3};
Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize();
Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize();
double jacobian1[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE];
double jacobian2[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE];
double jacobian3[FunctorType::PATCH_SIZE * FunctorType::POINT_SIZE];
double residuals[FunctorType::PATCH_SIZE];
double* jacobians[] = {jacobian1, jacobian2, jacobian3};
// Prepare data (fixed seed for repeatability).
std::mt19937::result_type seed = 42;
std::mt19937 gen(seed);
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
std::uniform_int_distribution<unsigned int> uniform0255(0, 255);
FunctorType::Patch<double> intensities_host =
FunctorType::Patch<double>::NullaryExpr(
[&]() { return uniform0255(gen); });
// Set bearing vector's z component to 1, i.e. pointing away from the camera,
// to ensure they are (likely) in the domain of the projection function (given
// a small rotation between host and target frame).
FunctorType::PatchVectors<double> bearings_host =
FunctorType::PatchVectors<double>::NullaryExpr(
[&]() { return uniform01(gen); });
bearings_host.row(2).array() = 1;
bearings_host.colwise().normalize();
ImageType image = ImageType::NullaryExpr(
[&]() { return static_cast<uint8_t>(uniform0255(gen)); });
FunctorType::Grid grid(image.data(), 0, image.rows(), 0, image.cols());
FunctorType::Interpolator image_target(grid);
FunctorType::Intrinsics intrinsics;
intrinsics << 128, 128, 1, -1, 0.5, 0.5;
std::unique_ptr<ceres::CostFunction> cost_function =
CostFunctionFactory<kIsDynamic>::template Create<FunctorType,
FunctorType::PATCH_SIZE,
FunctorType::POSE_SIZE,
FunctorType::POSE_SIZE,
FunctorType::POINT_SIZE>(
intensities_host, bearings_host, image_target, intrinsics);
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK_TEMPLATE(BM_PhotometricAutoDiff, kNotDynamic)->Arg(0)->Arg(1);
BENCHMARK_TEMPLATE(BM_PhotometricAutoDiff, kDynamic)->Arg(0)->Arg(1);
template <Dynamic kIsDynamic>
static void BM_RelativePoseAutoDiff(benchmark::State& state) {
using FunctorType = RelativePoseError;
double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.};
double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1};
double* parameters[] = {parameter_block1, parameter_block2};
Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize();
Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize();
double jacobian1[6 * 7];
double jacobian2[6 * 7];
double residuals[6];
double* jacobians[] = {jacobian1, jacobian2};
Eigen::Quaterniond q_i_j = Eigen::Quaterniond(1, 2, 3, 4).normalized();
Eigen::Vector3d t_i_j(1, 2, 3);
std::unique_ptr<ceres::CostFunction> cost_function =
CostFunctionFactory<kIsDynamic>::template Create<FunctorType, 6, 7, 7>(
q_i_j, t_i_j);
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK_TEMPLATE(BM_RelativePoseAutoDiff, kNotDynamic)->Arg(0)->Arg(1);
BENCHMARK_TEMPLATE(BM_RelativePoseAutoDiff, kDynamic)->Arg(0)->Arg(1);
template <Dynamic kIsDynamic>
static void BM_BrdfAutoDiff(benchmark::State& state) {
using FunctorType = Brdf;
double material[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.};
auto c = Eigen::Vector3d(0.1, 0.2, 0.3);
auto n = Eigen::Vector3d(-0.1, 0.5, 0.2).normalized();
auto v = Eigen::Vector3d(0.5, -0.2, 0.9).normalized();
auto l = Eigen::Vector3d(-0.3, 0.4, -0.3).normalized();
auto x = Eigen::Vector3d(0.5, 0.7, -0.1).normalized();
auto y = Eigen::Vector3d(0.2, -0.2, -0.2).normalized();
double* parameters[7] = {
material, c.data(), n.data(), v.data(), l.data(), x.data(), y.data()};
double jacobian[(10 + 6 * 3) * 3];
double residuals[3];
// clang-format off
double* jacobians[7] = {
jacobian + 0, jacobian + 10 * 3, jacobian + 13 * 3,
jacobian + 16 * 3, jacobian + 19 * 3, jacobian + 22 * 3,
jacobian + 25 * 3,
};
// clang-format on
std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory<
kIsDynamic>::template Create<FunctorType, 3, 10, 3, 3, 3, 3, 3, 3>();
for (auto _ : state) {
cost_function->Evaluate(
parameters, residuals, state.range(0) ? jacobians : nullptr);
}
}
BENCHMARK_TEMPLATE(BM_BrdfAutoDiff, kNotDynamic)->Arg(0)->Arg(1);
BENCHMARK_TEMPLATE(BM_BrdfAutoDiff, kDynamic)->Arg(0)->Arg(1);
} // namespace ceres
BENCHMARK_MAIN();