| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2020 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: darius.rueckert@fau.de (Darius Rueckert) |
| |
| #include <memory> |
| #include <random> |
| #include <utility> |
| |
| #include "benchmark/benchmark.h" |
| #include "ceres/autodiff_benchmarks/brdf_cost_function.h" |
| #include "ceres/autodiff_benchmarks/constant_cost_function.h" |
| #include "ceres/autodiff_benchmarks/linear_cost_functions.h" |
| #include "ceres/autodiff_benchmarks/photometric_error.h" |
| #include "ceres/autodiff_benchmarks/relative_pose_error.h" |
| #include "ceres/autodiff_benchmarks/snavely_reprojection_error.h" |
| #include "ceres/ceres.h" |
| |
| namespace ceres { |
| |
| enum Dynamic { kNotDynamic, kDynamic }; |
| |
| // Transforms a static functor into a dynamic one. |
| template <typename CostFunctionType, int kNumParameterBlocks> |
| class ToDynamic { |
| public: |
| template <typename... _Args> |
| explicit ToDynamic(_Args&&... __args) |
| : cost_function_(std::forward<_Args>(__args)...) {} |
| |
| template <typename T> |
| bool operator()(const T* const* parameters, T* residuals) const { |
| return Apply( |
| parameters, residuals, std::make_index_sequence<kNumParameterBlocks>()); |
| } |
| |
| private: |
| template <typename T, size_t... Indices> |
| bool Apply(const T* const* parameters, |
| T* residuals, |
| std::index_sequence<Indices...>) const { |
| return cost_function_(parameters[Indices]..., residuals); |
| } |
| |
| CostFunctionType cost_function_; |
| }; |
| |
| template <int kParameterBlockSize> |
| static void BM_ConstantAnalytic(benchmark::State& state) { |
| constexpr int num_residuals = 1; |
| std::array<double, kParameterBlockSize> parameters_values; |
| std::iota(parameters_values.begin(), parameters_values.end(), 0); |
| double* parameters[] = {parameters_values.data()}; |
| |
| std::array<double, num_residuals> residuals; |
| |
| std::array<double, num_residuals * kParameterBlockSize> jacobian_values; |
| double* jacobians[] = {jacobian_values.data()}; |
| |
| std::unique_ptr<ceres::CostFunction> cost_function( |
| new AnalyticConstantCostFunction<kParameterBlockSize>()); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate(parameters, residuals.data(), jacobians); |
| } |
| } |
| |
| // Helpers for CostFunctionFactory. |
| template <typename DynamicCostFunctionType> |
| void AddParameterBlocks(DynamicCostFunctionType*) {} |
| |
| template <int HeadN, int... TailNs, typename DynamicCostFunctionType> |
| void AddParameterBlocks(DynamicCostFunctionType* dynamic_function) { |
| dynamic_function->AddParameterBlock(HeadN); |
| AddParameterBlocks<TailNs...>(dynamic_function); |
| } |
| |
| // Creates an autodiff cost function wrapping `CostFunctor`, with |
| // `kNumResiduals` residuals and parameter blocks with sized `Ns..`. |
| // Depending on `kIsDynamic`, either a static or dynamic cost function is |
| // created. |
| // `args` are forwarded to the `CostFunctor` constructor. |
| template <Dynamic kIsDynamic> |
| struct CostFunctionFactory {}; |
| |
| template <> |
| struct CostFunctionFactory<kNotDynamic> { |
| template <typename CostFunctor, |
| int kNumResiduals, |
| int... Ns, |
| typename... Args> |
| static std::unique_ptr<ceres::CostFunction> Create(Args&&... args) { |
| return std::make_unique< |
| ceres::AutoDiffCostFunction<CostFunctor, kNumResiduals, Ns...>>( |
| new CostFunctor(std::forward<Args>(args)...)); |
| } |
| }; |
| |
| template <> |
| struct CostFunctionFactory<kDynamic> { |
| template <typename CostFunctor, |
| int kNumResiduals, |
| int... Ns, |
| typename... Args> |
| static std::unique_ptr<ceres::CostFunction> Create(Args&&... args) { |
| constexpr const int kNumParameterBlocks = sizeof...(Ns); |
| auto dynamic_function = std::make_unique<ceres::DynamicAutoDiffCostFunction< |
| ToDynamic<CostFunctor, kNumParameterBlocks>>>( |
| new ToDynamic<CostFunctor, kNumParameterBlocks>( |
| std::forward<Args>(args)...)); |
| dynamic_function->SetNumResiduals(kNumResiduals); |
| AddParameterBlocks<Ns...>(dynamic_function.get()); |
| return dynamic_function; |
| } |
| }; |
| |
| template <int kParameterBlockSize, Dynamic kIsDynamic> |
| static void BM_ConstantAutodiff(benchmark::State& state) { |
| constexpr int num_residuals = 1; |
| std::array<double, kParameterBlockSize> parameters_values; |
| std::iota(parameters_values.begin(), parameters_values.end(), 0); |
| double* parameters[] = {parameters_values.data()}; |
| |
| std::array<double, num_residuals> residuals; |
| |
| std::array<double, num_residuals * kParameterBlockSize> jacobian_values; |
| double* jacobians[] = {jacobian_values.data()}; |
| |
| std::unique_ptr<ceres::CostFunction> cost_function = |
| CostFunctionFactory<kIsDynamic>:: |
| template Create<ConstantCostFunction<kParameterBlockSize>, 1, 1>(); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate(parameters, residuals.data(), jacobians); |
| } |
| } |
| |
| BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 1); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 1, kNotDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 1, kDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 10); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 10, kNotDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 10, kDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 20); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 20, kNotDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 20, kDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 30); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 30, kNotDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 30, kDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 40); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 40, kNotDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 40, kDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 50); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 50, kNotDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 50, kDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 60); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 60, kNotDynamic); |
| BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 60, kDynamic); |
| |
| template <Dynamic kIsDynamic> |
| static void BM_Linear1AutoDiff(benchmark::State& state) { |
| double parameter_block1[] = {1.}; |
| double* parameters[] = {parameter_block1}; |
| |
| double jacobian1[1]; |
| double residuals[1]; |
| double* jacobians[] = {jacobian1}; |
| |
| std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| kIsDynamic>::template Create<Linear1CostFunction, 1, 1>(); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate( |
| parameters, residuals, state.range(0) ? jacobians : nullptr); |
| } |
| } |
| BENCHMARK_TEMPLATE(BM_Linear1AutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| BENCHMARK_TEMPLATE(BM_Linear1AutoDiff, kDynamic)->Arg(0)->Arg(1); |
| |
| template <Dynamic kIsDynamic> |
| static void BM_Linear10AutoDiff(benchmark::State& state) { |
| double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}; |
| double* parameters[] = {parameter_block1}; |
| |
| double jacobian1[10 * 10]; |
| double residuals[10]; |
| double* jacobians[] = {jacobian1}; |
| |
| std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| kIsDynamic>::template Create<Linear10CostFunction, 10, 10>(); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate( |
| parameters, residuals, state.range(0) ? jacobians : nullptr); |
| } |
| } |
| BENCHMARK_TEMPLATE(BM_Linear10AutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| BENCHMARK_TEMPLATE(BM_Linear10AutoDiff, kDynamic)->Arg(0)->Arg(1); |
| |
| // From the NIST problem collection. |
| struct Rat43CostFunctor { |
| Rat43CostFunctor(const double x, const double y) : x_(x), y_(y) {} |
| |
| template <typename T> |
| inline bool operator()(const T* parameters, T* residuals) const { |
| const T& b1 = parameters[0]; |
| const T& b2 = parameters[1]; |
| const T& b3 = parameters[2]; |
| const T& b4 = parameters[3]; |
| residuals[0] = b1 * pow(1.0 + exp(b2 - b3 * x_), -1.0 / b4) - y_; |
| return true; |
| } |
| |
| static constexpr int kNumParameterBlocks = 1; |
| |
| private: |
| const double x_; |
| const double y_; |
| }; |
| |
| template <Dynamic kIsDynamic> |
| static void BM_Rat43AutoDiff(benchmark::State& state) { |
| double parameter_block1[] = {1., 2., 3., 4.}; |
| double* parameters[] = {parameter_block1}; |
| |
| double jacobian1[] = {0.0, 0.0, 0.0, 0.0}; |
| double residuals; |
| double* jacobians[] = {jacobian1}; |
| const double x = 0.2; |
| const double y = 0.3; |
| std::unique_ptr<ceres::CostFunction> cost_function = |
| CostFunctionFactory<kIsDynamic>::template Create<Rat43CostFunctor, 1, 4>( |
| x, y); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate( |
| parameters, &residuals, state.range(0) ? jacobians : nullptr); |
| } |
| } |
| BENCHMARK_TEMPLATE(BM_Rat43AutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| BENCHMARK_TEMPLATE(BM_Rat43AutoDiff, kDynamic)->Arg(0)->Arg(1); |
| |
| template <Dynamic kIsDynamic> |
| static void BM_SnavelyReprojectionAutoDiff(benchmark::State& state) { |
| double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9.}; |
| double parameter_block2[] = {1., 2., 3.}; |
| double* parameters[] = {parameter_block1, parameter_block2}; |
| |
| double jacobian1[2 * 9]; |
| double jacobian2[2 * 3]; |
| double residuals[2]; |
| double* jacobians[] = {jacobian1, jacobian2}; |
| |
| const double x = 0.2; |
| const double y = 0.3; |
| std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| kIsDynamic>::template Create<SnavelyReprojectionError, 2, 9, 3>(x, y); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate( |
| parameters, residuals, state.range(0) ? jacobians : nullptr); |
| } |
| } |
| |
| BENCHMARK_TEMPLATE(BM_SnavelyReprojectionAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| BENCHMARK_TEMPLATE(BM_SnavelyReprojectionAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| |
| template <Dynamic kIsDynamic> |
| static void BM_PhotometricAutoDiff(benchmark::State& state) { |
| constexpr int PATCH_SIZE = 8; |
| |
| using FunctorType = PhotometricError<PATCH_SIZE>; |
| using ImageType = Eigen::Matrix<uint8_t, 128, 128, Eigen::RowMajor>; |
| |
| // Prepare parameter / residual / jacobian blocks. |
| double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.}; |
| double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1}; |
| double parameter_block3[] = {1.}; |
| double* parameters[] = {parameter_block1, parameter_block2, parameter_block3}; |
| |
| Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize(); |
| Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize(); |
| |
| double jacobian1[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE]; |
| double jacobian2[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE]; |
| double jacobian3[FunctorType::PATCH_SIZE * FunctorType::POINT_SIZE]; |
| double residuals[FunctorType::PATCH_SIZE]; |
| double* jacobians[] = {jacobian1, jacobian2, jacobian3}; |
| |
| // Prepare data (fixed seed for repeatability). |
| std::mt19937::result_type seed = 42; |
| std::mt19937 gen(seed); |
| std::uniform_real_distribution<double> uniform01(0.0, 1.0); |
| std::uniform_int_distribution<unsigned int> uniform0255(0, 255); |
| |
| FunctorType::Patch<double> intensities_host = |
| FunctorType::Patch<double>::NullaryExpr( |
| [&]() { return uniform0255(gen); }); |
| |
| // Set bearing vector's z component to 1, i.e. pointing away from the camera, |
| // to ensure they are (likely) in the domain of the projection function (given |
| // a small rotation between host and target frame). |
| FunctorType::PatchVectors<double> bearings_host = |
| FunctorType::PatchVectors<double>::NullaryExpr( |
| [&]() { return uniform01(gen); }); |
| bearings_host.row(2).array() = 1; |
| bearings_host.colwise().normalize(); |
| |
| ImageType image = ImageType::NullaryExpr( |
| [&]() { return static_cast<uint8_t>(uniform0255(gen)); }); |
| FunctorType::Grid grid(image.data(), 0, image.rows(), 0, image.cols()); |
| FunctorType::Interpolator image_target(grid); |
| |
| FunctorType::Intrinsics intrinsics; |
| intrinsics << 128, 128, 1, -1, 0.5, 0.5; |
| |
| std::unique_ptr<ceres::CostFunction> cost_function = |
| CostFunctionFactory<kIsDynamic>::template Create<FunctorType, |
| FunctorType::PATCH_SIZE, |
| FunctorType::POSE_SIZE, |
| FunctorType::POSE_SIZE, |
| FunctorType::POINT_SIZE>( |
| intensities_host, bearings_host, image_target, intrinsics); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate( |
| parameters, residuals, state.range(0) ? jacobians : nullptr); |
| } |
| } |
| |
| BENCHMARK_TEMPLATE(BM_PhotometricAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| BENCHMARK_TEMPLATE(BM_PhotometricAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| |
| template <Dynamic kIsDynamic> |
| static void BM_RelativePoseAutoDiff(benchmark::State& state) { |
| using FunctorType = RelativePoseError; |
| |
| double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.}; |
| double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1}; |
| double* parameters[] = {parameter_block1, parameter_block2}; |
| |
| Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize(); |
| Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize(); |
| |
| double jacobian1[6 * 7]; |
| double jacobian2[6 * 7]; |
| double residuals[6]; |
| double* jacobians[] = {jacobian1, jacobian2}; |
| |
| Eigen::Quaterniond q_i_j = Eigen::Quaterniond(1, 2, 3, 4).normalized(); |
| Eigen::Vector3d t_i_j(1, 2, 3); |
| |
| std::unique_ptr<ceres::CostFunction> cost_function = |
| CostFunctionFactory<kIsDynamic>::template Create<FunctorType, 6, 7, 7>( |
| q_i_j, t_i_j); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate( |
| parameters, residuals, state.range(0) ? jacobians : nullptr); |
| } |
| } |
| |
| BENCHMARK_TEMPLATE(BM_RelativePoseAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| BENCHMARK_TEMPLATE(BM_RelativePoseAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| |
| template <Dynamic kIsDynamic> |
| static void BM_BrdfAutoDiff(benchmark::State& state) { |
| using FunctorType = Brdf; |
| |
| double material[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}; |
| auto c = Eigen::Vector3d(0.1, 0.2, 0.3); |
| auto n = Eigen::Vector3d(-0.1, 0.5, 0.2).normalized(); |
| auto v = Eigen::Vector3d(0.5, -0.2, 0.9).normalized(); |
| auto l = Eigen::Vector3d(-0.3, 0.4, -0.3).normalized(); |
| auto x = Eigen::Vector3d(0.5, 0.7, -0.1).normalized(); |
| auto y = Eigen::Vector3d(0.2, -0.2, -0.2).normalized(); |
| |
| double* parameters[7] = { |
| material, c.data(), n.data(), v.data(), l.data(), x.data(), y.data()}; |
| |
| double jacobian[(10 + 6 * 3) * 3]; |
| double residuals[3]; |
| // clang-format off |
| double* jacobians[7] = { |
| jacobian + 0, jacobian + 10 * 3, jacobian + 13 * 3, |
| jacobian + 16 * 3, jacobian + 19 * 3, jacobian + 22 * 3, |
| jacobian + 25 * 3, |
| }; |
| // clang-format on |
| |
| std::unique_ptr<ceres::CostFunction> cost_function = CostFunctionFactory< |
| kIsDynamic>::template Create<FunctorType, 3, 10, 3, 3, 3, 3, 3, 3>(); |
| |
| for (auto _ : state) { |
| cost_function->Evaluate( |
| parameters, residuals, state.range(0) ? jacobians : nullptr); |
| } |
| } |
| |
| BENCHMARK_TEMPLATE(BM_BrdfAutoDiff, kNotDynamic)->Arg(0)->Arg(1); |
| BENCHMARK_TEMPLATE(BM_BrdfAutoDiff, kDynamic)->Arg(0)->Arg(1); |
| |
| } // namespace ceres |
| |
| BENCHMARK_MAIN(); |