| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // |
| // A minimal, self-contained bundle adjuster using Ceres, that reads |
| // files from University of Washington' Bundle Adjustment in the Large dataset: |
| // http://grail.cs.washington.edu/projects/bal |
| // |
| // This does not use the best configuration for solving; see the more involved |
| // bundle_adjuster.cc file for details. |
| |
| #include <cmath> |
| #include <cstdio> |
| #include <iostream> |
| |
| #include "absl/log/initialize.h" |
| #include "absl/log/log.h" |
| #include "ceres/ceres.h" |
| #include "ceres/rotation.h" |
| |
| // Read a Bundle Adjustment in the Large dataset. |
| class BALProblem { |
| public: |
| ~BALProblem() { |
| delete[] point_index_; |
| delete[] camera_index_; |
| delete[] observations_; |
| delete[] parameters_; |
| } |
| |
| int num_observations() const { return num_observations_; } |
| const double* observations() const { return observations_; } |
| double* mutable_cameras() { return parameters_; } |
| double* mutable_points() { return parameters_ + 9 * num_cameras_; } |
| |
| double* mutable_camera_for_observation(int i) { |
| return mutable_cameras() + camera_index_[i] * 9; |
| } |
| double* mutable_point_for_observation(int i) { |
| return mutable_points() + point_index_[i] * 3; |
| } |
| |
| bool LoadFile(const char* filename) { |
| FILE* fptr = fopen(filename, "r"); |
| if (fptr == nullptr) { |
| return false; |
| }; |
| |
| FscanfOrDie(fptr, "%d", &num_cameras_); |
| FscanfOrDie(fptr, "%d", &num_points_); |
| FscanfOrDie(fptr, "%d", &num_observations_); |
| |
| point_index_ = new int[num_observations_]; |
| camera_index_ = new int[num_observations_]; |
| observations_ = new double[2 * num_observations_]; |
| |
| num_parameters_ = 9 * num_cameras_ + 3 * num_points_; |
| parameters_ = new double[num_parameters_]; |
| |
| for (int i = 0; i < num_observations_; ++i) { |
| FscanfOrDie(fptr, "%d", camera_index_ + i); |
| FscanfOrDie(fptr, "%d", point_index_ + i); |
| for (int j = 0; j < 2; ++j) { |
| FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j); |
| } |
| } |
| |
| for (int i = 0; i < num_parameters_; ++i) { |
| FscanfOrDie(fptr, "%lf", parameters_ + i); |
| } |
| return true; |
| } |
| |
| private: |
| template <typename T> |
| void FscanfOrDie(FILE* fptr, const char* format, T* value) { |
| int num_scanned = fscanf(fptr, format, value); |
| if (num_scanned != 1) { |
| LOG(FATAL) << "Invalid UW data file."; |
| } |
| } |
| |
| int num_cameras_; |
| int num_points_; |
| int num_observations_; |
| int num_parameters_; |
| |
| int* point_index_; |
| int* camera_index_; |
| double* observations_; |
| double* parameters_; |
| }; |
| |
| // Templated pinhole camera model for used with Ceres. The camera is |
| // parameterized using 9 parameters: 3 for rotation, 3 for translation, 1 for |
| // focal length and 2 for radial distortion. The principal point is not modeled |
| // (i.e. it is assumed be located at the image center). |
| struct SnavelyReprojectionError { |
| SnavelyReprojectionError(double observed_x, double observed_y) |
| : observed_x(observed_x), observed_y(observed_y) {} |
| |
| template <typename T> |
| bool operator()(const T* const camera, |
| const T* const point, |
| T* residuals) const { |
| // camera[0,1,2] are the angle-axis rotation. |
| T p[3]; |
| ceres::AngleAxisRotatePoint(camera, point, p); |
| |
| // camera[3,4,5] are the translation. |
| p[0] += camera[3]; |
| p[1] += camera[4]; |
| p[2] += camera[5]; |
| |
| // Compute the center of distortion. The sign change comes from |
| // the camera model that Noah Snavely's Bundler assumes, whereby |
| // the camera coordinate system has a negative z axis. |
| T xp = -p[0] / p[2]; |
| T yp = -p[1] / p[2]; |
| |
| // Apply second and fourth order radial distortion. |
| const T& l1 = camera[7]; |
| const T& l2 = camera[8]; |
| T r2 = xp * xp + yp * yp; |
| T distortion = 1.0 + r2 * (l1 + l2 * r2); |
| |
| // Compute final projected point position. |
| const T& focal = camera[6]; |
| T predicted_x = focal * distortion * xp; |
| T predicted_y = focal * distortion * yp; |
| |
| // The error is the difference between the predicted and observed position. |
| residuals[0] = predicted_x - observed_x; |
| residuals[1] = predicted_y - observed_y; |
| |
| return true; |
| } |
| |
| // Factory to hide the construction of the CostFunction object from |
| // the client code. |
| static ceres::CostFunction* Create(const double observed_x, |
| const double observed_y) { |
| return new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>( |
| observed_x, observed_y); |
| } |
| |
| double observed_x; |
| double observed_y; |
| }; |
| |
| int main(int argc, char** argv) { |
| absl::InitializeLog(); |
| |
| if (argc != 2) { |
| std::cerr << "usage: simple_bundle_adjuster <bal_problem>\n"; |
| return 1; |
| } |
| |
| BALProblem bal_problem; |
| if (!bal_problem.LoadFile(argv[1])) { |
| std::cerr << "ERROR: unable to open file " << argv[1] << "\n"; |
| return 1; |
| } |
| |
| const double* observations = bal_problem.observations(); |
| |
| // Create residuals for each observation in the bundle adjustment problem. The |
| // parameters for cameras and points are added automatically. |
| ceres::Problem problem; |
| for (int i = 0; i < bal_problem.num_observations(); ++i) { |
| // Each Residual block takes a point and a camera as input and outputs a 2 |
| // dimensional residual. Internally, the cost function stores the observed |
| // image location and compares the reprojection against the observation. |
| |
| ceres::CostFunction* cost_function = SnavelyReprojectionError::Create( |
| observations[2 * i + 0], observations[2 * i + 1]); |
| problem.AddResidualBlock(cost_function, |
| nullptr /* squared loss */, |
| bal_problem.mutable_camera_for_observation(i), |
| bal_problem.mutable_point_for_observation(i)); |
| } |
| |
| // Make Ceres automatically detect the bundle structure. Note that the |
| // standard solver, SPARSE_NORMAL_CHOLESKY, also works fine but it is slower |
| // for standard bundle adjustment problems. |
| ceres::Solver::Options options; |
| options.linear_solver_type = ceres::DENSE_SCHUR; |
| options.minimizer_progress_to_stdout = true; |
| |
| ceres::Solver::Summary summary; |
| ceres::Solve(options, &problem, &summary); |
| std::cout << summary.FullReport() << "\n"; |
| return 0; |
| } |