| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // Templated functions for manipulating rotations. The templated | 
 | // functions are useful when implementing functors for automatic | 
 | // differentiation. | 
 | // | 
 | // In the following, the Quaternions are laid out as 4-vectors, thus: | 
 | // | 
 | //   q[0]  scalar part. | 
 | //   q[1]  coefficient of i. | 
 | //   q[2]  coefficient of j. | 
 | //   q[3]  coefficient of k. | 
 | // | 
 | // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j. | 
 |  | 
 | #ifndef CERES_PUBLIC_ROTATION_H_ | 
 | #define CERES_PUBLIC_ROTATION_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | // Convert a value in combined axis-angle representation to a quaternion. | 
 | // The value angle_axis is a triple whose norm is an angle in radians, | 
 | // and whose direction is aligned with the axis of rotation, | 
 | // and quaternion is a 4-tuple that will contain the resulting quaternion. | 
 | // The implementation may be used with auto-differentiation up to the first | 
 | // derivative, higher derivatives may have unexpected results near the origin. | 
 | template<typename T> | 
 | void AngleAxisToQuaternion(T const* angle_axis, T* quaternion); | 
 |  | 
 | // Convert a quaternion to the equivalent combined axis-angle representation. | 
 | // The value quaternion must be a unit quaternion - it is not normalized first, | 
 | // and angle_axis will be filled with a value whose norm is the angle of | 
 | // rotation in radians, and whose direction is the axis of rotation. | 
 | // The implemention may be used with auto-differentiation up to the first | 
 | // derivative, higher derivatives may have unexpected results near the origin. | 
 | template<typename T> | 
 | void QuaternionToAngleAxis(T const* quaternion, T* angle_axis); | 
 |  | 
 | // Conversions between 3x3 rotation matrix (in column major order) and | 
 | // axis-angle rotation representations.  Templated for use with | 
 | // autodifferentiation. | 
 | template <typename T> | 
 | void RotationMatrixToAngleAxis(T const * R, T * angle_axis); | 
 | template <typename T> | 
 | void AngleAxisToRotationMatrix(T const * angle_axis, T * R); | 
 |  | 
 | // Conversions between 3x3 rotation matrix (in row major order) and | 
 | // Euler angle (in degrees) rotation representations. | 
 | // | 
 | // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z} | 
 | // axes, respectively.  They are applied in that same order, so the | 
 | // total rotation R is Rz * Ry * Rx. | 
 | template <typename T> | 
 | void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R); | 
 |  | 
 | // Convert a 4-vector to a 3x3 scaled rotation matrix. | 
 | // | 
 | // The choice of rotation is such that the quaternion [1 0 0 0] goes to an | 
 | // identity matrix and for small a, b, c the quaternion [1 a b c] goes to | 
 | // the matrix | 
 | // | 
 | //         [  0 -c  b ] | 
 | //   I + 2 [  c  0 -a ] + higher order terms | 
 | //         [ -b  a  0 ] | 
 | // | 
 | // which corresponds to a Rodrigues approximation, the last matrix being | 
 | // the cross-product matrix of [a b c]. Together with the property that | 
 | // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R. | 
 | // | 
 | // The rotation matrix is row-major. | 
 | // | 
 | // No normalization of the quaternion is performed, i.e. | 
 | // R = ||q||^2 * Q, where Q is an orthonormal matrix | 
 | // such that det(Q) = 1 and Q*Q' = I | 
 | template <typename T> inline | 
 | void QuaternionToScaledRotation(const T q[4], T R[3 * 3]); | 
 |  | 
 | // Same as above except that the rotation matrix is normalized by the | 
 | // Frobenius norm, so that R * R' = I (and det(R) = 1). | 
 | template <typename T> inline | 
 | void QuaternionToRotation(const T q[4], T R[3 * 3]); | 
 |  | 
 | // Rotates a point pt by a quaternion q: | 
 | // | 
 | //   result = R(q) * pt | 
 | // | 
 | // Assumes the quaternion is unit norm. This assumption allows us to | 
 | // write the transform as (something)*pt + pt, as is clear from the | 
 | // formula below. If you pass in a quaternion with |q|^2 = 2 then you | 
 | // WILL NOT get back 2 times the result you get for a unit quaternion. | 
 | template <typename T> inline | 
 | void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); | 
 |  | 
 | // With this function you do not need to assume that q has unit norm. | 
 | // It does assume that the norm is non-zero. | 
 | template <typename T> inline | 
 | void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]); | 
 |  | 
 | // zw = z * w, where * is the Quaternion product between 4 vectors. | 
 | template<typename T> inline | 
 | void QuaternionProduct(const T z[4], const T w[4], T zw[4]); | 
 |  | 
 | // xy = x cross y; | 
 | template<typename T> inline | 
 | void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]); | 
 |  | 
 | template<typename T> inline | 
 | T DotProduct(const T x[3], const T y[3]); | 
 |  | 
 | // y = R(angle_axis) * x; | 
 | template<typename T> inline | 
 | void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]); | 
 |  | 
 | // --- IMPLEMENTATION | 
 |  | 
 | template<typename T> | 
 | inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) { | 
 |   const T& a0 = angle_axis[0]; | 
 |   const T& a1 = angle_axis[1]; | 
 |   const T& a2 = angle_axis[2]; | 
 |   const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2; | 
 |  | 
 |   // For points not at the origin, the full conversion is numerically stable. | 
 |   if (theta_squared > T(0.0)) { | 
 |     const T theta = sqrt(theta_squared); | 
 |     const T half_theta = theta * T(0.5); | 
 |     const T k = sin(half_theta) / theta; | 
 |     quaternion[0] = cos(half_theta); | 
 |     quaternion[1] = a0 * k; | 
 |     quaternion[2] = a1 * k; | 
 |     quaternion[3] = a2 * k; | 
 |   } else { | 
 |     // At the origin, sqrt() will produce NaN in the derivative since | 
 |     // the argument is zero.  By approximating with a Taylor series, | 
 |     // and truncating at one term, the value and first derivatives will be | 
 |     // computed correctly when Jets are used. | 
 |     const T k(0.5); | 
 |     quaternion[0] = T(1.0); | 
 |     quaternion[1] = a0 * k; | 
 |     quaternion[2] = a1 * k; | 
 |     quaternion[3] = a2 * k; | 
 |   } | 
 | } | 
 |  | 
 | template<typename T> | 
 | inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) { | 
 |   const T& q1 = quaternion[1]; | 
 |   const T& q2 = quaternion[2]; | 
 |   const T& q3 = quaternion[3]; | 
 |   const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3; | 
 |  | 
 |   // For quaternions representing non-zero rotation, the conversion | 
 |   // is numerically stable. | 
 |   if (sin_squared_theta > T(0.0)) { | 
 |     const T sin_theta = sqrt(sin_squared_theta); | 
 |     const T& cos_theta = quaternion[0]; | 
 |  | 
 |     // If cos_theta is negative, theta is greater than pi/2, which | 
 |     // means that angle for the angle_axis vector which is 2 * theta | 
 |     // would be greater than pi. | 
 |     // | 
 |     // While this will result in the correct rotation, it does not | 
 |     // result in a normalized angle-axis vector. | 
 |     // | 
 |     // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi, | 
 |     // which is equivalent saying | 
 |     // | 
 |     //   theta - pi = atan(sin(theta - pi), cos(theta - pi)) | 
 |     //              = atan(-sin(theta), -cos(theta)) | 
 |     // | 
 |     const T two_theta = | 
 |         T(2.0) * ((cos_theta < 0.0) | 
 |                   ? atan2(-sin_theta, -cos_theta) | 
 |                   : atan2(sin_theta, cos_theta)); | 
 |     const T k = two_theta / sin_theta; | 
 |     angle_axis[0] = q1 * k; | 
 |     angle_axis[1] = q2 * k; | 
 |     angle_axis[2] = q3 * k; | 
 |   } else { | 
 |     // For zero rotation, sqrt() will produce NaN in the derivative since | 
 |     // the argument is zero.  By approximating with a Taylor series, | 
 |     // and truncating at one term, the value and first derivatives will be | 
 |     // computed correctly when Jets are used. | 
 |     const T k(2.0); | 
 |     angle_axis[0] = q1 * k; | 
 |     angle_axis[1] = q2 * k; | 
 |     angle_axis[2] = q3 * k; | 
 |   } | 
 | } | 
 |  | 
 | // The conversion of a rotation matrix to the angle-axis form is | 
 | // numerically problematic when then rotation angle is close to zero | 
 | // or to Pi. The following implementation detects when these two cases | 
 | // occurs and deals with them by taking code paths that are guaranteed | 
 | // to not perform division by a small number. | 
 | template <typename T> | 
 | inline void RotationMatrixToAngleAxis(const T * R, T * angle_axis) { | 
 |   // x = k * 2 * sin(theta), where k is the axis of rotation. | 
 |   angle_axis[0] = R[5] - R[7]; | 
 |   angle_axis[1] = R[6] - R[2]; | 
 |   angle_axis[2] = R[1] - R[3]; | 
 |  | 
 |   static const T kOne = T(1.0); | 
 |   static const T kTwo = T(2.0); | 
 |  | 
 |   // Since the right hand side may give numbers just above 1.0 or | 
 |   // below -1.0 leading to atan misbehaving, we threshold. | 
 |   T costheta = std::min(std::max((R[0] + R[4] + R[8] - kOne) / kTwo, | 
 |                                  T(-1.0)), | 
 |                         kOne); | 
 |  | 
 |   // sqrt is guaranteed to give non-negative results, so we only | 
 |   // threshold above. | 
 |   T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] + | 
 |                              angle_axis[1] * angle_axis[1] + | 
 |                              angle_axis[2] * angle_axis[2]) / kTwo, | 
 |                         kOne); | 
 |  | 
 |   // Use the arctan2 to get the right sign on theta | 
 |   const T theta = atan2(sintheta, costheta); | 
 |  | 
 |   // Case 1: sin(theta) is large enough, so dividing by it is not a | 
 |   // problem. We do not use abs here, because while jets.h imports | 
 |   // std::abs into the namespace, here in this file, abs resolves to | 
 |   // the int version of the function, which returns zero always. | 
 |   // | 
 |   // We use a threshold much larger then the machine epsilon, because | 
 |   // if sin(theta) is small, not only do we risk overflow but even if | 
 |   // that does not occur, just dividing by a small number will result | 
 |   // in numerical garbage. So we play it safe. | 
 |   static const double kThreshold = 1e-12; | 
 |   if ((sintheta > kThreshold) || (sintheta < -kThreshold)) { | 
 |     const T r = theta / (kTwo * sintheta); | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       angle_axis[i] *= r; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Case 2: theta ~ 0, means sin(theta) ~ theta to a good | 
 |   // approximation. | 
 |   if (costheta > 0.0) { | 
 |     const T kHalf = T(0.5); | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       angle_axis[i] *= kHalf; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Case 3: theta ~ pi, this is the hard case. Since theta is large, | 
 |   // and sin(theta) is small. Dividing by theta by sin(theta) will | 
 |   // either give an overflow or worse still numerically meaningless | 
 |   // results. Thus we use an alternate more complicated formula | 
 |   // here. | 
 |  | 
 |   // Since cos(theta) is negative, division by (1-cos(theta)) cannot | 
 |   // overflow. | 
 |   const T inv_one_minus_costheta = kOne / (kOne - costheta); | 
 |  | 
 |   // We now compute the absolute value of coordinates of the axis | 
 |   // vector using the diagonal entries of R. To resolve the sign of | 
 |   // these entries, we compare the sign of angle_axis[i]*sin(theta) | 
 |   // with the sign of sin(theta). If they are the same, then | 
 |   // angle_axis[i] should be positive, otherwise negative. | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     angle_axis[i] = theta * sqrt((R[i*4] - costheta) * inv_one_minus_costheta); | 
 |     if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) || | 
 |         ((sintheta > 0.0) && (angle_axis[i] < 0.0))) { | 
 |       angle_axis[i] = -angle_axis[i]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void AngleAxisToRotationMatrix(const T * angle_axis, T * R) { | 
 |   static const T kOne = T(1.0); | 
 |   const T theta2 = DotProduct(angle_axis, angle_axis); | 
 |   if (theta2 > 0.0) { | 
 |     // We want to be careful to only evaluate the square root if the | 
 |     // norm of the angle_axis vector is greater than zero. Otherwise | 
 |     // we get a division by zero. | 
 |     const T theta = sqrt(theta2); | 
 |     const T wx = angle_axis[0] / theta; | 
 |     const T wy = angle_axis[1] / theta; | 
 |     const T wz = angle_axis[2] / theta; | 
 |  | 
 |     const T costheta = cos(theta); | 
 |     const T sintheta = sin(theta); | 
 |  | 
 |     R[0] =     costheta   + wx*wx*(kOne -    costheta); | 
 |     R[1] =  wz*sintheta   + wx*wy*(kOne -    costheta); | 
 |     R[2] = -wy*sintheta   + wx*wz*(kOne -    costheta); | 
 |     R[3] =  wx*wy*(kOne - costheta)     - wz*sintheta; | 
 |     R[4] =     costheta   + wy*wy*(kOne -    costheta); | 
 |     R[5] =  wx*sintheta   + wy*wz*(kOne -    costheta); | 
 |     R[6] =  wy*sintheta   + wx*wz*(kOne -    costheta); | 
 |     R[7] = -wx*sintheta   + wy*wz*(kOne -    costheta); | 
 |     R[8] =     costheta   + wz*wz*(kOne -    costheta); | 
 |   } else { | 
 |     // At zero, we switch to using the first order Taylor expansion. | 
 |     R[0] =  kOne; | 
 |     R[1] = -angle_axis[2]; | 
 |     R[2] =  angle_axis[1]; | 
 |     R[3] =  angle_axis[2]; | 
 |     R[4] =  kOne; | 
 |     R[5] = -angle_axis[0]; | 
 |     R[6] = -angle_axis[1]; | 
 |     R[7] =  angle_axis[0]; | 
 |     R[8] = kOne; | 
 |   } | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline void EulerAnglesToRotationMatrix(const T* euler, | 
 |                                         const int row_stride, | 
 |                                         T* R) { | 
 |   const double kPi = 3.14159265358979323846; | 
 |   const T degrees_to_radians(kPi / 180.0); | 
 |  | 
 |   const T pitch(euler[0] * degrees_to_radians); | 
 |   const T roll(euler[1] * degrees_to_radians); | 
 |   const T yaw(euler[2] * degrees_to_radians); | 
 |  | 
 |   const T c1 = cos(yaw); | 
 |   const T s1 = sin(yaw); | 
 |   const T c2 = cos(roll); | 
 |   const T s2 = sin(roll); | 
 |   const T c3 = cos(pitch); | 
 |   const T s3 = sin(pitch); | 
 |  | 
 |   // Rows of the rotation matrix. | 
 |   T* R1 = R; | 
 |   T* R2 = R1 + row_stride; | 
 |   T* R3 = R2 + row_stride; | 
 |  | 
 |   R1[0] = c1*c2; | 
 |   R1[1] = -s1*c3 + c1*s2*s3; | 
 |   R1[2] = s1*s3 + c1*s2*c3; | 
 |  | 
 |   R2[0] = s1*c2; | 
 |   R2[1] = c1*c3 + s1*s2*s3; | 
 |   R2[2] = -c1*s3 + s1*s2*c3; | 
 |  | 
 |   R3[0] = -s2; | 
 |   R3[1] = c2*s3; | 
 |   R3[2] = c2*c3; | 
 | } | 
 |  | 
 | template <typename T> inline | 
 | void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) { | 
 |   // Make convenient names for elements of q. | 
 |   T a = q[0]; | 
 |   T b = q[1]; | 
 |   T c = q[2]; | 
 |   T d = q[3]; | 
 |   // This is not to eliminate common sub-expression, but to | 
 |   // make the lines shorter so that they fit in 80 columns! | 
 |   T aa = a * a; | 
 |   T ab = a * b; | 
 |   T ac = a * c; | 
 |   T ad = a * d; | 
 |   T bb = b * b; | 
 |   T bc = b * c; | 
 |   T bd = b * d; | 
 |   T cc = c * c; | 
 |   T cd = c * d; | 
 |   T dd = d * d; | 
 |  | 
 |   R[0] =  aa + bb - cc - dd; R[1] = T(2) * (bc - ad); R[2] = T(2) * (ac + bd);  // NOLINT | 
 |   R[3] = T(2) * (ad + bc); R[4] =  aa - bb + cc - dd; R[5] = T(2) * (cd - ab);  // NOLINT | 
 |   R[6] = T(2) * (bd - ac); R[7] = T(2) * (ab + cd); R[8] =  aa - bb - cc + dd;  // NOLINT | 
 | } | 
 |  | 
 | template <typename T> inline | 
 | void QuaternionToRotation(const T q[4], T R[3 * 3]) { | 
 |   QuaternionToScaledRotation(q, R); | 
 |  | 
 |   T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]; | 
 |   CHECK_NE(normalizer, T(0)); | 
 |   normalizer = T(1) / normalizer; | 
 |  | 
 |   for (int i = 0; i < 9; ++i) { | 
 |     R[i] *= normalizer; | 
 |   } | 
 | } | 
 |  | 
 | template <typename T> inline | 
 | void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) { | 
 |   const T t2 =  q[0] * q[1]; | 
 |   const T t3 =  q[0] * q[2]; | 
 |   const T t4 =  q[0] * q[3]; | 
 |   const T t5 = -q[1] * q[1]; | 
 |   const T t6 =  q[1] * q[2]; | 
 |   const T t7 =  q[1] * q[3]; | 
 |   const T t8 = -q[2] * q[2]; | 
 |   const T t9 =  q[2] * q[3]; | 
 |   const T t1 = -q[3] * q[3]; | 
 |   result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0];  // NOLINT | 
 |   result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1];  // NOLINT | 
 |   result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2];  // NOLINT | 
 | } | 
 |  | 
 |  | 
 | template <typename T> inline | 
 | void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) { | 
 |   // 'scale' is 1 / norm(q). | 
 |   const T scale = T(1) / sqrt(q[0] * q[0] + | 
 |                               q[1] * q[1] + | 
 |                               q[2] * q[2] + | 
 |                               q[3] * q[3]); | 
 |  | 
 |   // Make unit-norm version of q. | 
 |   const T unit[4] = { | 
 |     scale * q[0], | 
 |     scale * q[1], | 
 |     scale * q[2], | 
 |     scale * q[3], | 
 |   }; | 
 |  | 
 |   UnitQuaternionRotatePoint(unit, pt, result); | 
 | } | 
 |  | 
 | template<typename T> inline | 
 | void QuaternionProduct(const T z[4], const T w[4], T zw[4]) { | 
 |   zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3]; | 
 |   zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2]; | 
 |   zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1]; | 
 |   zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0]; | 
 | } | 
 |  | 
 | // xy = x cross y; | 
 | template<typename T> inline | 
 | void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) { | 
 |   x_cross_y[0] = x[1] * y[2] - x[2] * y[1]; | 
 |   x_cross_y[1] = x[2] * y[0] - x[0] * y[2]; | 
 |   x_cross_y[2] = x[0] * y[1] - x[1] * y[0]; | 
 | } | 
 |  | 
 | template<typename T> inline | 
 | T DotProduct(const T x[3], const T y[3]) { | 
 |   return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]); | 
 | } | 
 |  | 
 | template<typename T> inline | 
 | void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) { | 
 |   T w[3]; | 
 |   T sintheta; | 
 |   T costheta; | 
 |  | 
 |   const T theta2 = DotProduct(angle_axis, angle_axis); | 
 |   if (theta2 > 0.0) { | 
 |     // Away from zero, use the rodriguez formula | 
 |     // | 
 |     //   result = pt costheta + | 
 |     //            (w x pt) * sintheta + | 
 |     //            w (w . pt) (1 - costheta) | 
 |     // | 
 |     // We want to be careful to only evaluate the square root if the | 
 |     // norm of the angle_axis vector is greater than zero. Otherwise | 
 |     // we get a division by zero. | 
 |     // | 
 |     const T theta = sqrt(theta2); | 
 |     w[0] = angle_axis[0] / theta; | 
 |     w[1] = angle_axis[1] / theta; | 
 |     w[2] = angle_axis[2] / theta; | 
 |     costheta = cos(theta); | 
 |     sintheta = sin(theta); | 
 |     T w_cross_pt[3]; | 
 |     CrossProduct(w, pt, w_cross_pt); | 
 |     T w_dot_pt = DotProduct(w, pt); | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       result[i] = pt[i] * costheta + | 
 |           w_cross_pt[i] * sintheta + | 
 |           w[i] * (T(1.0) - costheta) * w_dot_pt; | 
 |     } | 
 |   } else { | 
 |     // Near zero, the first order Taylor approximation of the rotation | 
 |     // matrix R corresponding to a vector w and angle w is | 
 |     // | 
 |     //   R = I + hat(w) * sin(theta) | 
 |     // | 
 |     // But sintheta ~ theta and theta * w = angle_axis, which gives us | 
 |     // | 
 |     //  R = I + hat(w) | 
 |     // | 
 |     // and actually performing multiplication with the point pt, gives us | 
 |     // R * pt = pt + w x pt. | 
 |     // | 
 |     // Switching to the Taylor expansion at zero helps avoid all sorts | 
 |     // of numerical nastiness. | 
 |     T w_cross_pt[3]; | 
 |     CrossProduct(angle_axis, pt, w_cross_pt); | 
 |     for (int i = 0; i < 3; ++i) { | 
 |       result[i] = pt[i] + w_cross_pt[i]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_ROTATION_H_ |