|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // Based on the tests in numeric_diff_cost_function.cc. | 
|  | // | 
|  | // TODO(keir): See about code duplication. | 
|  |  | 
|  | #include "ceres/runtime_numeric_diff_cost_function.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <string> | 
|  | #include <vector> | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/internal/macros.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/test_util.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | const double kRelativeEps = 1e-6; | 
|  |  | 
|  | // y1 = x1'x2      -> dy1/dx1 = x2,               dy1/dx2 = x1 | 
|  | // y2 = (x1'x2)^2  -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2) | 
|  | // y3 = x2'x2      -> dy3/dx1 = 0,                dy3/dx2 = 2 * x2 | 
|  | class TestCostFunction : public CostFunction { | 
|  | public: | 
|  | TestCostFunction() { | 
|  | set_num_residuals(3); | 
|  | mutable_parameter_block_sizes()->push_back(5);  // x1. | 
|  | mutable_parameter_block_sizes()->push_back(5);  // x2. | 
|  | } | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | (void) jacobians;  // Ignored. | 
|  |  | 
|  | residuals[0] = residuals[1] = residuals[2] = 0; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | residuals[0] += parameters[0][i] * parameters[1][i]; | 
|  | residuals[2] += parameters[1][i] * parameters[1][i]; | 
|  | } | 
|  | residuals[1] = residuals[0] * residuals[0]; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(NumericDiffCostFunction, EasyCase) { | 
|  | // Try both central and forward difference. | 
|  | TestCostFunction term; | 
|  | scoped_ptr<CostFunction> cfs[2]; | 
|  | cfs[0].reset( | 
|  | CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps)); | 
|  |  | 
|  | cfs[1].reset( | 
|  | CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps)); | 
|  |  | 
|  |  | 
|  | for (int c = 0; c < 2; ++c) { | 
|  | CostFunction *cost_function = cfs[c].get(); | 
|  |  | 
|  | double x1[] = { 1.0, 2.0, 3.0, 4.0, 5.0 }; | 
|  | double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; | 
|  | double *parameters[] = { &x1[0], &x2[0] }; | 
|  |  | 
|  | double dydx1[15];  // 3 x 5, row major. | 
|  | double dydx2[15];  // 3 x 5, row major. | 
|  | double *jacobians[2] = { &dydx1[0], &dydx2[0] }; | 
|  |  | 
|  | double residuals[3] = {-1e-100, -2e-100, -3e-100 }; | 
|  |  | 
|  | ASSERT_TRUE(cost_function->Evaluate(¶meters[0], | 
|  | &residuals[0], | 
|  | &jacobians[0])); | 
|  |  | 
|  | EXPECT_EQ(residuals[0], 67); | 
|  | EXPECT_EQ(residuals[1], 4489); | 
|  | EXPECT_EQ(residuals[2], 213); | 
|  |  | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | LOG(INFO) << "c = " << c << " i = " << i; | 
|  | const double kEps = c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5; | 
|  |  | 
|  | ExpectClose(x2[i],                    dydx1[5 * 0 + i], kEps);  // y1 | 
|  | ExpectClose(x1[i],                    dydx2[5 * 0 + i], kEps); | 
|  | ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], kEps);  // y2 | 
|  | ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], kEps); | 
|  | ExpectClose(0.0,                      dydx1[5 * 2 + i], kEps);  // y3 | 
|  | ExpectClose(2 * x2[i],                dydx2[5 * 2 + i], kEps); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // y1 = sin(x1'x2) | 
|  | // y2 = exp(-x1'x2 / 10) | 
|  | // | 
|  | // dy1/dx1 =  x2 * cos(x1'x2),            dy1/dx2 =  x1 * cos(x1'x2) | 
|  | // dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10 | 
|  | class TranscendentalTestCostFunction : public CostFunction { | 
|  | public: | 
|  | TranscendentalTestCostFunction() { | 
|  | set_num_residuals(2); | 
|  | mutable_parameter_block_sizes()->push_back(5);  // x1. | 
|  | mutable_parameter_block_sizes()->push_back(5);  // x2. | 
|  | } | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | (void) jacobians;  // Ignored. | 
|  |  | 
|  | double x1x2 = 0; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | x1x2 += parameters[0][i] * parameters[1][i]; | 
|  | } | 
|  | residuals[0] = sin(x1x2); | 
|  | residuals[1] = exp(-x1x2 / 10); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(NumericDiffCostFunction, TransendentalOperationsInCostFunction) { | 
|  | // Try both central and forward difference. | 
|  | TranscendentalTestCostFunction term; | 
|  | scoped_ptr<CostFunction> cfs[2]; | 
|  | cfs[0].reset( | 
|  | CreateRuntimeNumericDiffCostFunction(&term, CENTRAL, kRelativeEps)); | 
|  |  | 
|  | cfs[1].reset( | 
|  | CreateRuntimeNumericDiffCostFunction(&term, FORWARD, kRelativeEps)); | 
|  |  | 
|  | for (int c = 0; c < 2; ++c) { | 
|  | CostFunction *cost_function = cfs[c].get(); | 
|  |  | 
|  | struct { | 
|  | double x1[5]; | 
|  | double x2[5]; | 
|  | } kTests[] = { | 
|  | { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // No zeros. | 
|  | { 9.0, 9.0, 5.0, 5.0, 1.0 }, | 
|  | }, | 
|  | { { 0.0, 2.0, 3.0, 0.0, 5.0 },  // Some zeros x1. | 
|  | { 9.0, 9.0, 5.0, 5.0, 1.0 }, | 
|  | }, | 
|  | { { 1.0, 2.0, 3.0, 1.0, 5.0 },  // Some zeros x2. | 
|  | { 0.0, 9.0, 0.0, 5.0, 0.0 }, | 
|  | }, | 
|  | { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros x1. | 
|  | { 9.0, 9.0, 5.0, 5.0, 1.0 }, | 
|  | }, | 
|  | { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // All zeros x2. | 
|  | { 0.0, 0.0, 0.0, 0.0, 0.0 }, | 
|  | }, | 
|  | { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros. | 
|  | { 0.0, 0.0, 0.0, 0.0, 0.0 }, | 
|  | }, | 
|  | }; | 
|  | for (int k = 0; k < CERES_ARRAYSIZE(kTests); ++k) { | 
|  | double *x1 = &(kTests[k].x1[0]); | 
|  | double *x2 = &(kTests[k].x2[0]); | 
|  | double *parameters[] = { x1, x2 }; | 
|  |  | 
|  | double dydx1[10]; | 
|  | double dydx2[10]; | 
|  | double *jacobians[2] = { &dydx1[0], &dydx2[0] }; | 
|  |  | 
|  | double residuals[2]; | 
|  |  | 
|  | ASSERT_TRUE(cost_function->Evaluate(¶meters[0], | 
|  | &residuals[0], | 
|  | &jacobians[0])); | 
|  | LOG(INFO) << "Ran evaluate for test k=" << k << " c=" << c; | 
|  |  | 
|  | double x1x2 = 0; | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | x1x2 += x1[i] * x2[i]; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | const double kEps = (c == 0 ? /* central */ 3e-9 : /* forward */ 2e-5); | 
|  |  | 
|  | ExpectClose( x2[i] * cos(x1x2),              dydx1[5 * 0 + i], kEps);  // NOLINT | 
|  | ExpectClose( x1[i] * cos(x1x2),              dydx2[5 * 0 + i], kEps);  // NOLINT | 
|  | ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], kEps); | 
|  | ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], kEps); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |