| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "bal_problem.h" |
| |
| #include <algorithm> |
| #include <cstdio> |
| #include <fstream> |
| #include <functional> |
| #include <random> |
| #include <string> |
| #include <vector> |
| |
| #include "Eigen/Core" |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "ceres/rotation.h" |
| |
| namespace ceres::examples { |
| namespace { |
| using VectorRef = Eigen::Map<Eigen::VectorXd>; |
| using ConstVectorRef = Eigen::Map<const Eigen::VectorXd>; |
| |
| template <typename T> |
| void FscanfOrDie(FILE* fptr, const char* format, T* value) { |
| int num_scanned = fscanf(fptr, format, value); |
| if (num_scanned != 1) { |
| LOG(FATAL) << "Invalid UW data file."; |
| } |
| } |
| |
| void PerturbPoint3(std::function<double()> dist, double* point) { |
| for (int i = 0; i < 3; ++i) { |
| point[i] += dist(); |
| } |
| } |
| |
| double Median(std::vector<double>* data) { |
| auto mid_point = data->begin() + data->size() / 2; |
| std::nth_element(data->begin(), mid_point, data->end()); |
| return *mid_point; |
| } |
| |
| } // namespace |
| |
| BALProblem::BALProblem(const std::string& filename, bool use_quaternions) { |
| FILE* fptr = fopen(filename.c_str(), "r"); |
| |
| if (fptr == nullptr) { |
| LOG(FATAL) << "Error: unable to open file " << filename; |
| return; |
| }; |
| |
| // This will die horribly on invalid files. Them's the breaks. |
| FscanfOrDie(fptr, "%d", &num_cameras_); |
| FscanfOrDie(fptr, "%d", &num_points_); |
| FscanfOrDie(fptr, "%d", &num_observations_); |
| |
| VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " " |
| << num_observations_; |
| |
| point_index_ = new int[num_observations_]; |
| camera_index_ = new int[num_observations_]; |
| observations_ = new double[2 * num_observations_]; |
| |
| num_parameters_ = 9 * num_cameras_ + 3 * num_points_; |
| parameters_ = new double[num_parameters_]; |
| |
| for (int i = 0; i < num_observations_; ++i) { |
| FscanfOrDie(fptr, "%d", camera_index_ + i); |
| FscanfOrDie(fptr, "%d", point_index_ + i); |
| for (int j = 0; j < 2; ++j) { |
| FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j); |
| } |
| } |
| |
| for (int i = 0; i < num_parameters_; ++i) { |
| FscanfOrDie(fptr, "%lf", parameters_ + i); |
| } |
| |
| fclose(fptr); |
| |
| use_quaternions_ = use_quaternions; |
| if (use_quaternions) { |
| // Switch the angle-axis rotations to quaternions. |
| num_parameters_ = 10 * num_cameras_ + 3 * num_points_; |
| auto* quaternion_parameters = new double[num_parameters_]; |
| double* original_cursor = parameters_; |
| double* quaternion_cursor = quaternion_parameters; |
| for (int i = 0; i < num_cameras_; ++i) { |
| AngleAxisToQuaternion(original_cursor, quaternion_cursor); |
| quaternion_cursor += 4; |
| original_cursor += 3; |
| for (int j = 4; j < 10; ++j) { |
| *quaternion_cursor++ = *original_cursor++; |
| } |
| } |
| // Copy the rest of the points. |
| for (int i = 0; i < 3 * num_points_; ++i) { |
| *quaternion_cursor++ = *original_cursor++; |
| } |
| // Swap in the quaternion parameters. |
| delete[] parameters_; |
| parameters_ = quaternion_parameters; |
| } |
| } |
| |
| // This function writes the problem to a file in the same format that |
| // is read by the constructor. |
| void BALProblem::WriteToFile(const std::string& filename) const { |
| FILE* fptr = fopen(filename.c_str(), "w"); |
| |
| if (fptr == nullptr) { |
| LOG(FATAL) << "Error: unable to open file " << filename; |
| return; |
| }; |
| |
| fprintf(fptr, "%d %d %d\n", num_cameras_, num_points_, num_observations_); |
| |
| for (int i = 0; i < num_observations_; ++i) { |
| fprintf(fptr, "%d %d", camera_index_[i], point_index_[i]); |
| for (int j = 0; j < 2; ++j) { |
| fprintf(fptr, " %g", observations_[2 * i + j]); |
| } |
| fprintf(fptr, "\n"); |
| } |
| |
| for (int i = 0; i < num_cameras(); ++i) { |
| double angleaxis[9]; |
| if (use_quaternions_) { |
| // Output in angle-axis format. |
| QuaternionToAngleAxis(parameters_ + 10 * i, angleaxis); |
| memcpy(angleaxis + 3, parameters_ + 10 * i + 4, 6 * sizeof(double)); |
| } else { |
| memcpy(angleaxis, parameters_ + 9 * i, 9 * sizeof(double)); |
| } |
| for (double coeff : angleaxis) { |
| fprintf(fptr, "%.16g\n", coeff); |
| } |
| } |
| |
| const double* points = parameters_ + camera_block_size() * num_cameras_; |
| for (int i = 0; i < num_points(); ++i) { |
| const double* point = points + i * point_block_size(); |
| for (int j = 0; j < point_block_size(); ++j) { |
| fprintf(fptr, "%.16g\n", point[j]); |
| } |
| } |
| |
| fclose(fptr); |
| } |
| |
| // Write the problem to a PLY file for inspection in Meshlab or CloudCompare. |
| void BALProblem::WriteToPLYFile(const std::string& filename) const { |
| std::ofstream of(filename.c_str()); |
| |
| of << "ply" << '\n' |
| << "format ascii 1.0" << '\n' |
| << "element vertex " << num_cameras_ + num_points_ << '\n' |
| << "property float x" << '\n' |
| << "property float y" << '\n' |
| << "property float z" << '\n' |
| << "property uchar red" << '\n' |
| << "property uchar green" << '\n' |
| << "property uchar blue" << '\n' |
| << "end_header" << std::endl; |
| |
| // Export extrinsic data (i.e. camera centers) as green points. |
| double angle_axis[3]; |
| double center[3]; |
| for (int i = 0; i < num_cameras(); ++i) { |
| const double* camera = cameras() + camera_block_size() * i; |
| CameraToAngleAxisAndCenter(camera, angle_axis, center); |
| of << center[0] << ' ' << center[1] << ' ' << center[2] << " 0 255 0" |
| << '\n'; |
| } |
| |
| // Export the structure (i.e. 3D Points) as white points. |
| const double* points = parameters_ + camera_block_size() * num_cameras_; |
| for (int i = 0; i < num_points(); ++i) { |
| const double* point = points + i * point_block_size(); |
| for (int j = 0; j < point_block_size(); ++j) { |
| of << point[j] << ' '; |
| } |
| of << "255 255 255\n"; |
| } |
| of.close(); |
| } |
| |
| void BALProblem::CameraToAngleAxisAndCenter(const double* camera, |
| double* angle_axis, |
| double* center) const { |
| VectorRef angle_axis_ref(angle_axis, 3); |
| if (use_quaternions_) { |
| QuaternionToAngleAxis(camera, angle_axis); |
| } else { |
| angle_axis_ref = ConstVectorRef(camera, 3); |
| } |
| |
| // c = -R't |
| Eigen::VectorXd inverse_rotation = -angle_axis_ref; |
| AngleAxisRotatePoint( |
| inverse_rotation.data(), camera + camera_block_size() - 6, center); |
| VectorRef(center, 3) *= -1.0; |
| } |
| |
| void BALProblem::AngleAxisAndCenterToCamera(const double* angle_axis, |
| const double* center, |
| double* camera) const { |
| ConstVectorRef angle_axis_ref(angle_axis, 3); |
| if (use_quaternions_) { |
| AngleAxisToQuaternion(angle_axis, camera); |
| } else { |
| VectorRef(camera, 3) = angle_axis_ref; |
| } |
| |
| // t = -R * c |
| AngleAxisRotatePoint(angle_axis, center, camera + camera_block_size() - 6); |
| VectorRef(camera + camera_block_size() - 6, 3) *= -1.0; |
| } |
| |
| void BALProblem::Normalize() { |
| // Compute the marginal median of the geometry. |
| std::vector<double> tmp(num_points_); |
| Eigen::Vector3d median; |
| double* points = mutable_points(); |
| for (int i = 0; i < 3; ++i) { |
| for (int j = 0; j < num_points_; ++j) { |
| tmp[j] = points[3 * j + i]; |
| } |
| median(i) = Median(&tmp); |
| } |
| |
| for (int i = 0; i < num_points_; ++i) { |
| VectorRef point(points + 3 * i, 3); |
| tmp[i] = (point - median).lpNorm<1>(); |
| } |
| |
| const double median_absolute_deviation = Median(&tmp); |
| |
| // Scale so that the median absolute deviation of the resulting |
| // reconstruction is 100. |
| const double scale = 100.0 / median_absolute_deviation; |
| |
| VLOG(2) << "median: " << median.transpose(); |
| VLOG(2) << "median absolute deviation: " << median_absolute_deviation; |
| VLOG(2) << "scale: " << scale; |
| |
| // X = scale * (X - median) |
| for (int i = 0; i < num_points_; ++i) { |
| VectorRef point(points + 3 * i, 3); |
| point = scale * (point - median); |
| } |
| |
| double* cameras = mutable_cameras(); |
| double angle_axis[3]; |
| double center[3]; |
| for (int i = 0; i < num_cameras_; ++i) { |
| double* camera = cameras + camera_block_size() * i; |
| CameraToAngleAxisAndCenter(camera, angle_axis, center); |
| // center = scale * (center - median) |
| VectorRef(center, 3) = scale * (VectorRef(center, 3) - median); |
| AngleAxisAndCenterToCamera(angle_axis, center, camera); |
| } |
| } |
| |
| void BALProblem::Perturb(const double rotation_sigma, |
| const double translation_sigma, |
| const double point_sigma) { |
| CHECK_GE(point_sigma, 0.0); |
| CHECK_GE(rotation_sigma, 0.0); |
| CHECK_GE(translation_sigma, 0.0); |
| std::mt19937 prng; |
| std::normal_distribution<double> point_noise_distribution(0.0, point_sigma); |
| double* points = mutable_points(); |
| if (point_sigma > 0) { |
| for (int i = 0; i < num_points_; ++i) { |
| PerturbPoint3(std::bind(point_noise_distribution, std::ref(prng)), |
| points + 3 * i); |
| } |
| } |
| |
| std::normal_distribution<double> rotation_noise_distribution(0.0, |
| point_sigma); |
| std::normal_distribution<double> translation_noise_distribution( |
| 0.0, translation_sigma); |
| for (int i = 0; i < num_cameras_; ++i) { |
| double* camera = mutable_cameras() + camera_block_size() * i; |
| |
| double angle_axis[3]; |
| double center[3]; |
| // Perturb in the rotation of the camera in the angle-axis |
| // representation. |
| CameraToAngleAxisAndCenter(camera, angle_axis, center); |
| if (rotation_sigma > 0.0) { |
| PerturbPoint3(std::bind(rotation_noise_distribution, std::ref(prng)), |
| angle_axis); |
| } |
| AngleAxisAndCenterToCamera(angle_axis, center, camera); |
| |
| if (translation_sigma > 0.0) { |
| PerturbPoint3(std::bind(translation_noise_distribution, std::ref(prng)), |
| camera + camera_block_size() - 6); |
| } |
| } |
| } |
| |
| BALProblem::~BALProblem() { |
| delete[] point_index_; |
| delete[] camera_index_; |
| delete[] observations_; |
| delete[] parameters_; |
| } |
| |
| } // namespace ceres::examples |