| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/compressed_row_sparse_matrix.h" |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <vector> |
| #include "ceres/crs_matrix.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::vector; |
| |
| namespace { |
| |
| // Helper functor used by the constructor for reordering the contents |
| // of a TripletSparseMatrix. This comparator assumes thay there are no |
| // duplicates in the pair of arrays rows and cols, i.e., there is no |
| // indices i and j (not equal to each other) s.t. |
| // |
| // rows[i] == rows[j] && cols[i] == cols[j] |
| // |
| // If this is the case, this functor will not be a StrictWeakOrdering. |
| struct RowColLessThan { |
| RowColLessThan(const int* rows, const int* cols) |
| : rows(rows), cols(cols) { |
| } |
| |
| bool operator()(const int x, const int y) const { |
| if (rows[x] == rows[y]) { |
| return (cols[x] < cols[y]); |
| } |
| return (rows[x] < rows[y]); |
| } |
| |
| const int* rows; |
| const int* cols; |
| }; |
| |
| } // namespace |
| |
| // This constructor gives you a semi-initialized CompressedRowSparseMatrix. |
| CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows, |
| int num_cols, |
| int max_num_nonzeros) { |
| num_rows_ = num_rows; |
| num_cols_ = num_cols; |
| rows_.resize(num_rows + 1, 0); |
| cols_.resize(max_num_nonzeros, 0); |
| values_.resize(max_num_nonzeros, 0.0); |
| |
| |
| VLOG(1) << "# of rows: " << num_rows_ |
| << " # of columns: " << num_cols_ |
| << " max_num_nonzeros: " << cols_.size() |
| << ". Allocating " << (num_rows_ + 1) * sizeof(int) + // NOLINT |
| cols_.size() * sizeof(int) + // NOLINT |
| cols_.size() * sizeof(double); // NOLINT |
| } |
| |
| CompressedRowSparseMatrix::CompressedRowSparseMatrix( |
| const TripletSparseMatrix& m) { |
| num_rows_ = m.num_rows(); |
| num_cols_ = m.num_cols(); |
| |
| rows_.resize(num_rows_ + 1, 0); |
| cols_.resize(m.num_nonzeros(), 0); |
| values_.resize(m.max_num_nonzeros(), 0.0); |
| |
| // index is the list of indices into the TripletSparseMatrix m. |
| vector<int> index(m.num_nonzeros(), 0); |
| for (int i = 0; i < m.num_nonzeros(); ++i) { |
| index[i] = i; |
| } |
| |
| // Sort index such that the entries of m are ordered by row and ties |
| // are broken by column. |
| sort(index.begin(), index.end(), RowColLessThan(m.rows(), m.cols())); |
| |
| VLOG(1) << "# of rows: " << num_rows_ |
| << " # of columns: " << num_cols_ |
| << " max_num_nonzeros: " << cols_.size() |
| << ". Allocating " |
| << ((num_rows_ + 1) * sizeof(int) + // NOLINT |
| cols_.size() * sizeof(int) + // NOLINT |
| cols_.size() * sizeof(double)); // NOLINT |
| |
| // Copy the contents of the cols and values array in the order given |
| // by index and count the number of entries in each row. |
| for (int i = 0; i < m.num_nonzeros(); ++i) { |
| const int idx = index[i]; |
| ++rows_[m.rows()[idx] + 1]; |
| cols_[i] = m.cols()[idx]; |
| values_[i] = m.values()[idx]; |
| } |
| |
| // Find the cumulative sum of the row counts. |
| for (int i = 1; i < num_rows_ + 1; ++i) { |
| rows_[i] += rows_[i - 1]; |
| } |
| |
| CHECK_EQ(num_nonzeros(), m.num_nonzeros()); |
| } |
| |
| CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal, |
| int num_rows) { |
| CHECK_NOTNULL(diagonal); |
| |
| num_rows_ = num_rows; |
| num_cols_ = num_rows; |
| rows_.resize(num_rows + 1); |
| cols_.resize(num_rows); |
| values_.resize(num_rows); |
| |
| rows_[0] = 0; |
| for (int i = 0; i < num_rows_; ++i) { |
| cols_[i] = i; |
| values_[i] = diagonal[i]; |
| rows_[i + 1] = i + 1; |
| } |
| |
| CHECK_EQ(num_nonzeros(), num_rows); |
| } |
| |
| CompressedRowSparseMatrix::~CompressedRowSparseMatrix() { |
| } |
| |
| void CompressedRowSparseMatrix::SetZero() { |
| std::fill(values_.begin(), values_.end(), 0); |
| } |
| |
| void CompressedRowSparseMatrix::RightMultiply(const double* x, |
| double* y) const { |
| CHECK_NOTNULL(x); |
| CHECK_NOTNULL(y); |
| |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| y[r] += values_[idx] * x[cols_[idx]]; |
| } |
| } |
| } |
| |
| void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const { |
| CHECK_NOTNULL(x); |
| CHECK_NOTNULL(y); |
| |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| y[cols_[idx]] += values_[idx] * x[r]; |
| } |
| } |
| } |
| |
| void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const { |
| CHECK_NOTNULL(x); |
| |
| std::fill(x, x + num_cols_, 0.0); |
| for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| x[cols_[idx]] += values_[idx] * values_[idx]; |
| } |
| } |
| |
| void CompressedRowSparseMatrix::ScaleColumns(const double* scale) { |
| CHECK_NOTNULL(scale); |
| |
| for (int idx = 0; idx < rows_[num_rows_]; ++idx) { |
| values_[idx] *= scale[cols_[idx]]; |
| } |
| } |
| |
| void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { |
| CHECK_NOTNULL(dense_matrix); |
| dense_matrix->resize(num_rows_, num_cols_); |
| dense_matrix->setZero(); |
| |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| (*dense_matrix)(r, cols_[idx]) = values_[idx]; |
| } |
| } |
| } |
| |
| void CompressedRowSparseMatrix::DeleteRows(int delta_rows) { |
| CHECK_GE(delta_rows, 0); |
| CHECK_LE(delta_rows, num_rows_); |
| |
| num_rows_ -= delta_rows; |
| rows_.resize(num_rows_ + 1); |
| |
| // Walk the list of row blocks until we reach the new number of rows |
| // and the drop the rest of the row blocks. |
| int num_row_blocks = 0; |
| int num_rows = 0; |
| while (num_row_blocks < row_blocks_.size() && num_rows < num_rows_) { |
| num_rows += row_blocks_[num_row_blocks]; |
| ++num_row_blocks; |
| } |
| |
| row_blocks_.resize(num_row_blocks); |
| } |
| |
| void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) { |
| CHECK_EQ(m.num_cols(), num_cols_); |
| |
| CHECK(row_blocks_.size() == 0 || m.row_blocks().size() !=0) |
| << "Cannot append a matrix with row blocks to one without and vice versa." |
| << "This matrix has : " << row_blocks_.size() << " row blocks." |
| << "The matrix being appended has: " << m.row_blocks().size() |
| << " row blocks."; |
| |
| if (cols_.size() < num_nonzeros() + m.num_nonzeros()) { |
| cols_.resize(num_nonzeros() + m.num_nonzeros()); |
| values_.resize(num_nonzeros() + m.num_nonzeros()); |
| } |
| |
| // Copy the contents of m into this matrix. |
| std::copy(m.cols(), m.cols() + m.num_nonzeros(), &cols_[num_nonzeros()]); |
| std::copy(m.values(), |
| m.values() + m.num_nonzeros(), |
| &values_[num_nonzeros()]); |
| rows_.resize(num_rows_ + m.num_rows() + 1); |
| // new_rows = [rows_, m.row() + rows_[num_rows_]] |
| std::fill(rows_.begin() + num_rows_, |
| rows_.begin() + num_rows_ + m.num_rows() + 1, |
| rows_[num_rows_]); |
| |
| for (int r = 0; r < m.num_rows() + 1; ++r) { |
| rows_[num_rows_ + r] += m.rows()[r]; |
| } |
| |
| num_rows_ += m.num_rows(); |
| row_blocks_.insert(row_blocks_.end(), |
| m.row_blocks().begin(), |
| m.row_blocks().end()); |
| } |
| |
| void CompressedRowSparseMatrix::ToTextFile(FILE* file) const { |
| CHECK_NOTNULL(file); |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| fprintf(file, |
| "% 10d % 10d %17f\n", |
| r, |
| cols_[idx], |
| values_[idx]); |
| } |
| } |
| } |
| |
| void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { |
| matrix->num_rows = num_rows_; |
| matrix->num_cols = num_cols_; |
| matrix->rows = rows_; |
| matrix->cols = cols_; |
| matrix->values = values_; |
| |
| // Trim. |
| matrix->rows.resize(matrix->num_rows + 1); |
| matrix->cols.resize(matrix->rows[matrix->num_rows]); |
| matrix->values.resize(matrix->rows[matrix->num_rows]); |
| } |
| |
| void CompressedRowSparseMatrix::SetMaxNumNonZeros(int num_nonzeros) { |
| CHECK_GE(num_nonzeros, 0); |
| |
| cols_.resize(num_nonzeros); |
| values_.resize(num_nonzeros); |
| } |
| |
| void CompressedRowSparseMatrix::SolveLowerTriangularInPlace( |
| double* solution) const { |
| for (int r = 0; r < num_rows_; ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1] - 1; ++idx) { |
| solution[r] -= values_[idx] * solution[cols_[idx]]; |
| } |
| solution[r] /= values_[rows_[r + 1] - 1]; |
| } |
| } |
| |
| void CompressedRowSparseMatrix::SolveLowerTriangularTransposeInPlace( |
| double* solution) const { |
| for (int r = num_rows_ - 1; r >= 0; --r) { |
| solution[r] /= values_[rows_[r + 1] - 1]; |
| for (int idx = rows_[r + 1] - 2; idx >= rows_[r]; --idx) { |
| solution[cols_[idx]] -= values_[idx] * solution[r]; |
| } |
| } |
| } |
| |
| CompressedRowSparseMatrix* CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( |
| const double* diagonal, |
| const vector<int>& blocks) { |
| int num_rows = 0; |
| int num_nonzeros = 0; |
| for (int i = 0; i < blocks.size(); ++i) { |
| num_rows += blocks[i]; |
| num_nonzeros += blocks[i] * blocks[i]; |
| } |
| |
| CompressedRowSparseMatrix* matrix = |
| new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros); |
| |
| int* rows = matrix->mutable_rows(); |
| int* cols = matrix->mutable_cols(); |
| double* values = matrix->mutable_values(); |
| std::fill(values, values + num_nonzeros, 0.0); |
| |
| int idx_cursor = 0; |
| int col_cursor = 0; |
| for (int i = 0; i < blocks.size(); ++i) { |
| const int block_size = blocks[i]; |
| for (int r = 0; r < block_size; ++r) { |
| *(rows++) = idx_cursor; |
| values[idx_cursor + r] = diagonal[col_cursor + r]; |
| for (int c = 0; c < block_size; ++c, ++idx_cursor) { |
| *(cols++) = col_cursor + c; |
| } |
| } |
| col_cursor += block_size; |
| } |
| *rows = idx_cursor; |
| |
| *matrix->mutable_row_blocks() = blocks; |
| *matrix->mutable_col_blocks() = blocks; |
| |
| CHECK_EQ(idx_cursor, num_nonzeros); |
| CHECK_EQ(col_cursor, num_rows); |
| return matrix; |
| } |
| |
| CompressedRowSparseMatrix* CompressedRowSparseMatrix::Transpose() const { |
| CompressedRowSparseMatrix* transpose = |
| new CompressedRowSparseMatrix(num_cols_, num_rows_, num_nonzeros()); |
| |
| int* transpose_rows = transpose->mutable_rows(); |
| int* transpose_cols = transpose->mutable_cols(); |
| double* transpose_values = transpose->mutable_values(); |
| |
| for (int idx = 0; idx < num_nonzeros(); ++idx) { |
| ++transpose_rows[cols_[idx] + 1]; |
| } |
| |
| for (int i = 1; i < transpose->num_rows() + 1; ++i) { |
| transpose_rows[i] += transpose_rows[i - 1]; |
| } |
| |
| for (int r = 0; r < num_rows(); ++r) { |
| for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) { |
| const int c = cols_[idx]; |
| const int transpose_idx = transpose_rows[c]++; |
| transpose_cols[transpose_idx] = r; |
| transpose_values[transpose_idx] = values_[idx]; |
| } |
| } |
| |
| for (int i = transpose->num_rows() - 1; i > 0 ; --i) { |
| transpose_rows[i] = transpose_rows[i - 1]; |
| } |
| transpose_rows[0] = 0; |
| |
| *(transpose->mutable_row_blocks()) = col_blocks_; |
| *(transpose->mutable_col_blocks()) = row_blocks_; |
| |
| return transpose; |
| } |
| |
| namespace { |
| // A ProductTerm is a term in the outer product of a matrix with |
| // itself. |
| struct ProductTerm { |
| ProductTerm(const int row, const int col, const int index) |
| : row(row), col(col), index(index) { |
| } |
| |
| bool operator<(const ProductTerm& right) const { |
| if (row == right.row) { |
| if (col == right.col) { |
| return index < right.index; |
| } |
| return col < right.col; |
| } |
| return row < right.row; |
| } |
| |
| int row; |
| int col; |
| int index; |
| }; |
| |
| CompressedRowSparseMatrix* |
| CompressAndFillProgram(const int num_rows, |
| const int num_cols, |
| const vector<ProductTerm>& product, |
| vector<int>* program) { |
| CHECK_GT(product.size(), 0); |
| |
| // Count the number of unique product term, which in turn is the |
| // number of non-zeros in the outer product. |
| int num_nonzeros = 1; |
| for (int i = 1; i < product.size(); ++i) { |
| if (product[i].row != product[i - 1].row || |
| product[i].col != product[i - 1].col) { |
| ++num_nonzeros; |
| } |
| } |
| |
| CompressedRowSparseMatrix* matrix = |
| new CompressedRowSparseMatrix(num_rows, num_cols, num_nonzeros); |
| |
| int* crsm_rows = matrix->mutable_rows(); |
| std::fill(crsm_rows, crsm_rows + num_rows + 1, 0); |
| int* crsm_cols = matrix->mutable_cols(); |
| std::fill(crsm_cols, crsm_cols + num_nonzeros, 0); |
| |
| CHECK_NOTNULL(program)->clear(); |
| program->resize(product.size()); |
| |
| // Iterate over the sorted product terms. This means each row is |
| // filled one at a time, and we are able to assign a position in the |
| // values array to each term. |
| // |
| // If terms repeat, i.e., they contribute to the same entry in the |
| // result matrix), then they do not affect the sparsity structure of |
| // the result matrix. |
| int nnz = 0; |
| crsm_cols[0] = product[0].col; |
| crsm_rows[product[0].row + 1]++; |
| (*program)[product[0].index] = nnz; |
| for (int i = 1; i < product.size(); ++i) { |
| const ProductTerm& previous = product[i - 1]; |
| const ProductTerm& current = product[i]; |
| |
| // Sparsity structure is updated only if the term is not a repeat. |
| if (previous.row != current.row || previous.col != current.col) { |
| crsm_cols[++nnz] = current.col; |
| crsm_rows[current.row + 1]++; |
| } |
| |
| // All terms get assigned the position in the values array where |
| // their value is accumulated. |
| (*program)[current.index] = nnz; |
| } |
| |
| for (int i = 1; i < num_rows + 1; ++i) { |
| crsm_rows[i] += crsm_rows[i - 1]; |
| } |
| |
| return matrix; |
| } |
| |
| } // namespace |
| |
| CompressedRowSparseMatrix* |
| CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( |
| const CompressedRowSparseMatrix& m, |
| vector<int>* program) { |
| CHECK_NOTNULL(program)->clear(); |
| CHECK_GT(m.num_nonzeros(), 0) |
| << "Congratulations, " |
| << "you found a bug in Ceres. Please report it."; |
| |
| vector<ProductTerm> product; |
| const vector<int>& row_blocks = m.row_blocks(); |
| int row_block_begin = 0; |
| // Iterate over row blocks |
| for (int row_block = 0; row_block < row_blocks.size(); ++row_block) { |
| const int row_block_end = row_block_begin + row_blocks[row_block]; |
| // Compute the outer product terms for just one row per row block. |
| const int r = row_block_begin; |
| // Compute the lower triangular part of the product. |
| for (int idx1 = m.rows()[r]; idx1 < m.rows()[r + 1]; ++idx1) { |
| for (int idx2 = m.rows()[r]; idx2 <= idx1; ++idx2) { |
| product.push_back(ProductTerm(m.cols()[idx1], |
| m.cols()[idx2], |
| product.size())); |
| } |
| } |
| row_block_begin = row_block_end; |
| } |
| CHECK_EQ(row_block_begin, m.num_rows()); |
| sort(product.begin(), product.end()); |
| return CompressAndFillProgram(m.num_cols(), m.num_cols(), product, program); |
| } |
| |
| void CompressedRowSparseMatrix::ComputeOuterProduct( |
| const CompressedRowSparseMatrix& m, |
| const vector<int>& program, |
| CompressedRowSparseMatrix* result) { |
| result->SetZero(); |
| double* values = result->mutable_values(); |
| const vector<int>& row_blocks = m.row_blocks(); |
| |
| int cursor = 0; |
| int row_block_begin = 0; |
| const double* m_values = m.values(); |
| const int* m_rows = m.rows(); |
| // Iterate over row blocks. |
| for (int row_block = 0; row_block < row_blocks.size(); ++row_block) { |
| const int row_block_end = row_block_begin + row_blocks[row_block]; |
| const int saved_cursor = cursor; |
| for (int r = row_block_begin; r < row_block_end; ++r) { |
| // Reuse the program segment for each row in this row block. |
| cursor = saved_cursor; |
| const int row_begin = m_rows[r]; |
| const int row_end = m_rows[r + 1]; |
| for (int idx1 = row_begin; idx1 < row_end; ++idx1) { |
| const double v1 = m_values[idx1]; |
| for (int idx2 = row_begin; idx2 <= idx1; ++idx2, ++cursor) { |
| values[program[cursor]] += v1 * m_values[idx2]; |
| } |
| } |
| } |
| row_block_begin = row_block_end; |
| } |
| |
| CHECK_EQ(row_block_begin, m.num_rows()); |
| CHECK_EQ(cursor, program.size()); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |