| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |
| #define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |
| |
| #include <vector> |
| #include "ceres/internal/macros.h" |
| #include "ceres/internal/port.h" |
| #include "ceres/sparse_matrix.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| |
| struct CRSMatrix; |
| |
| namespace internal { |
| |
| class TripletSparseMatrix; |
| |
| class CompressedRowSparseMatrix : public SparseMatrix { |
| public: |
| // Build a matrix with the same content as the TripletSparseMatrix |
| // m. TripletSparseMatrix objects are easier to construct |
| // incrementally, so we use them to initialize SparseMatrix |
| // objects. |
| // |
| // We assume that m does not have any repeated entries. |
| explicit CompressedRowSparseMatrix(const TripletSparseMatrix& m); |
| |
| // Use this constructor only if you know what you are doing. This |
| // creates a "blank" matrix with the appropriate amount of memory |
| // allocated. However, the object itself is in an inconsistent state |
| // as the rows and cols matrices do not match the values of |
| // num_rows, num_cols and max_num_nonzeros. |
| // |
| // The use case for this constructor is that when the user knows the |
| // size of the matrix to begin with and wants to update the layout |
| // manually, instead of going via the indirect route of first |
| // constructing a TripletSparseMatrix, which leads to more than |
| // double the peak memory usage. |
| CompressedRowSparseMatrix(int num_rows, |
| int num_cols, |
| int max_num_nonzeros); |
| |
| // Build a square sparse diagonal matrix with num_rows rows and |
| // columns. The diagonal m(i,i) = diagonal(i); |
| CompressedRowSparseMatrix(const double* diagonal, int num_rows); |
| |
| virtual ~CompressedRowSparseMatrix(); |
| |
| // SparseMatrix interface. |
| virtual void SetZero(); |
| virtual void RightMultiply(const double* x, double* y) const; |
| virtual void LeftMultiply(const double* x, double* y) const; |
| virtual void SquaredColumnNorm(double* x) const; |
| virtual void ScaleColumns(const double* scale); |
| |
| virtual void ToDenseMatrix(Matrix* dense_matrix) const; |
| virtual void ToTextFile(FILE* file) const; |
| virtual int num_rows() const { return num_rows_; } |
| virtual int num_cols() const { return num_cols_; } |
| virtual int num_nonzeros() const { return rows_[num_rows_]; } |
| virtual const double* values() const { return &values_[0]; } |
| virtual double* mutable_values() { return &values_[0]; } |
| |
| // Delete the bottom delta_rows. |
| // num_rows -= delta_rows |
| void DeleteRows(int delta_rows); |
| |
| // Append the contents of m to the bottom of this matrix. m must |
| // have the same number of columns as this matrix. |
| void AppendRows(const CompressedRowSparseMatrix& m); |
| |
| void ToCRSMatrix(CRSMatrix* matrix) const; |
| |
| // Low level access methods that expose the structure of the matrix. |
| const int* cols() const { return &cols_[0]; } |
| int* mutable_cols() { return &cols_[0]; } |
| |
| const int* rows() const { return &rows_[0]; } |
| int* mutable_rows() { return &rows_[0]; } |
| |
| const std::vector<int>& row_blocks() const { return row_blocks_; } |
| std::vector<int>* mutable_row_blocks() { return &row_blocks_; } |
| |
| const std::vector<int>& col_blocks() const { return col_blocks_; } |
| std::vector<int>* mutable_col_blocks() { return &col_blocks_; } |
| |
| // Destructive array resizing method. |
| void SetMaxNumNonZeros(int num_nonzeros); |
| |
| // Non-destructive array resizing method. |
| void set_num_rows(const int num_rows) { num_rows_ = num_rows; } |
| void set_num_cols(const int num_cols) { num_cols_ = num_cols; } |
| |
| void SolveLowerTriangularInPlace(double* solution) const; |
| void SolveLowerTriangularTransposeInPlace(double* solution) const; |
| |
| CompressedRowSparseMatrix* Transpose() const; |
| |
| static CompressedRowSparseMatrix* CreateBlockDiagonalMatrix( |
| const double* diagonal, |
| const std::vector<int>& blocks); |
| |
| // Compute the sparsity structure of the product m.transpose() * m |
| // and create a CompressedRowSparseMatrix corresponding to it. |
| // |
| // Also compute a "program" vector, which for every term in the |
| // outer product points to the entry in the values array of the |
| // result matrix where it should be accumulated. |
| // |
| // This program is used by the ComputeOuterProduct function below to |
| // compute the outer product. |
| // |
| // Since the entries of the program are the same for rows with the |
| // same sparsity structure, the program only stores the result for |
| // one row per row block. The ComputeOuterProduct function reuses |
| // this information for each row in the row block. |
| static CompressedRowSparseMatrix* CreateOuterProductMatrixAndProgram( |
| const CompressedRowSparseMatrix& m, |
| std::vector<int>* program); |
| |
| // Compute the values array for the expression m.transpose() * m, |
| // where the matrix used to store the result and a program have been |
| // created using the CreateOuterProductMatrixAndProgram function |
| // above. |
| static void ComputeOuterProduct(const CompressedRowSparseMatrix& m, |
| const std::vector<int>& program, |
| CompressedRowSparseMatrix* result); |
| |
| private: |
| int num_rows_; |
| int num_cols_; |
| std::vector<int> rows_; |
| std::vector<int> cols_; |
| std::vector<double> values_; |
| |
| // If the matrix has an underlying block structure, then it can also |
| // carry with it row and column block sizes. This is auxilliary and |
| // optional information for use by algorithms operating on the |
| // matrix. The class itself does not make use of this information in |
| // any way. |
| std::vector<int> row_blocks_; |
| std::vector<int> col_blocks_; |
| |
| CERES_DISALLOW_COPY_AND_ASSIGN(CompressedRowSparseMatrix); |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |