| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wjr@google.com (William Rucklidge) |
| // |
| // This file contains tests for the GradientChecker class. |
| |
| #include "ceres/gradient_checker.h" |
| |
| #include <cmath> |
| #include <cstdlib> |
| #include <vector> |
| |
| #include "ceres/cost_function.h" |
| #include "ceres/random.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::vector; |
| |
| // We pick a (non-quadratic) function whose derivative are easy: |
| // |
| // f = exp(- a' x). |
| // df = - f a. |
| // |
| // where 'a' is a vector of the same size as 'x'. In the block |
| // version, they are both block vectors, of course. |
| class GoodTestTerm : public CostFunction { |
| public: |
| GoodTestTerm(int arity, int const *dim) : arity_(arity) { |
| // Make 'arity' random vectors. |
| a_.resize(arity_); |
| for (int j = 0; j < arity_; ++j) { |
| a_[j].resize(dim[j]); |
| for (int u = 0; u < dim[j]; ++u) { |
| a_[j][u] = 2.0 * RandDouble() - 1.0; |
| } |
| } |
| |
| for (int i = 0; i < arity_; i++) { |
| mutable_parameter_block_sizes()->push_back(dim[i]); |
| } |
| set_num_residuals(1); |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| // Compute a . x. |
| double ax = 0; |
| for (int j = 0; j < arity_; ++j) { |
| for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| ax += a_[j][u] * parameters[j][u]; |
| } |
| } |
| |
| // This is the cost, but also appears as a factor |
| // in the derivatives. |
| double f = *residuals = exp(-ax); |
| |
| // Accumulate 1st order derivatives. |
| if (jacobians) { |
| for (int j = 0; j < arity_; ++j) { |
| if (jacobians[j]) { |
| for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| // See comments before class. |
| jacobians[j][u] = - f * a_[j][u]; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| int arity_; |
| vector<vector<double> > a_; // our vectors. |
| }; |
| |
| class BadTestTerm : public CostFunction { |
| public: |
| BadTestTerm(int arity, int const *dim) : arity_(arity) { |
| // Make 'arity' random vectors. |
| a_.resize(arity_); |
| for (int j = 0; j < arity_; ++j) { |
| a_[j].resize(dim[j]); |
| for (int u = 0; u < dim[j]; ++u) { |
| a_[j][u] = 2.0 * RandDouble() - 1.0; |
| } |
| } |
| |
| for (int i = 0; i < arity_; i++) { |
| mutable_parameter_block_sizes()->push_back(dim[i]); |
| } |
| set_num_residuals(1); |
| } |
| |
| bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| // Compute a . x. |
| double ax = 0; |
| for (int j = 0; j < arity_; ++j) { |
| for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| ax += a_[j][u] * parameters[j][u]; |
| } |
| } |
| |
| // This is the cost, but also appears as a factor |
| // in the derivatives. |
| double f = *residuals = exp(-ax); |
| |
| // Accumulate 1st order derivatives. |
| if (jacobians) { |
| for (int j = 0; j < arity_; ++j) { |
| if (jacobians[j]) { |
| for (int u = 0; u < parameter_block_sizes()[j]; ++u) { |
| // See comments before class. |
| jacobians[j][u] = - f * a_[j][u] + 0.001; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| int arity_; |
| vector<vector<double> > a_; // our vectors. |
| }; |
| |
| TEST(GradientChecker, SmokeTest) { |
| srand(5); |
| |
| // Test with 3 blocks of size 2, 3 and 4. |
| int const arity = 3; |
| int const dim[arity] = { 2, 3, 4 }; |
| |
| // Make a random set of blocks. |
| FixedArray<double*> parameters(arity); |
| for (int j = 0; j < arity; ++j) { |
| parameters[j] = new double[dim[j]]; |
| for (int u = 0; u < dim[j]; ++u) { |
| parameters[j][u] = 2.0 * RandDouble() - 1.0; |
| } |
| } |
| |
| // Make a term and probe it. |
| GoodTestTerm good_term(arity, dim); |
| typedef GradientChecker<GoodTestTerm, 1, 2, 3, 4> GoodTermGradientChecker; |
| EXPECT_TRUE(GoodTermGradientChecker::Probe( |
| parameters.get(), 1e-6, &good_term, NULL)); |
| |
| BadTestTerm bad_term(arity, dim); |
| typedef GradientChecker<BadTestTerm, 1, 2, 3, 4> BadTermGradientChecker; |
| EXPECT_FALSE(BadTermGradientChecker::Probe( |
| parameters.get(), 1e-6, &bad_term, NULL)); |
| |
| for (int j = 0; j < arity; j++) { |
| delete[] parameters[j]; |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |