| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/casts.h" |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| |
| namespace ceres { |
| namespace internal { |
| |
| class UnsymmetricLinearSolverTest : public ::testing::Test { |
| protected : |
| virtual void SetUp() { |
| scoped_ptr<LinearLeastSquaresProblem> problem( |
| CreateLinearLeastSquaresProblemFromId(0)); |
| |
| CHECK_NOTNULL(problem.get()); |
| A_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| b_.reset(problem->b.release()); |
| D_.reset(problem->D.release()); |
| sol_unregularized_.reset(problem->x.release()); |
| sol_regularized_.reset(problem->x_D.release()); |
| } |
| |
| void TestSolver(const LinearSolver::Options& options) { |
| LinearSolver::PerSolveOptions per_solve_options; |
| LinearSolver::Summary unregularized_solve_summary; |
| LinearSolver::Summary regularized_solve_summary; |
| Vector x_unregularized(A_->num_cols()); |
| Vector x_regularized(A_->num_cols()); |
| |
| scoped_ptr<SparseMatrix> transformed_A; |
| |
| if (options.type == DENSE_QR || |
| options.type == DENSE_NORMAL_CHOLESKY) { |
| transformed_A.reset(new DenseSparseMatrix(*A_)); |
| } else if (options.type == SPARSE_NORMAL_CHOLESKY) { |
| CompressedRowSparseMatrix* crsm = new CompressedRowSparseMatrix(*A_); |
| // Add row/column blocks structure. |
| for (int i = 0; i < A_->num_rows(); ++i) { |
| crsm->mutable_row_blocks()->push_back(1); |
| } |
| |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| crsm->mutable_col_blocks()->push_back(1); |
| } |
| transformed_A.reset(crsm); |
| } else { |
| LOG(FATAL) << "Unknown linear solver : " << options.type; |
| } |
| |
| // Unregularized |
| scoped_ptr<LinearSolver> solver(LinearSolver::Create(options)); |
| unregularized_solve_summary = |
| solver->Solve(transformed_A.get(), |
| b_.get(), |
| per_solve_options, |
| x_unregularized.data()); |
| |
| // Sparsity structure is changing, reset the solver. |
| solver.reset(LinearSolver::Create(options)); |
| // Regularized solution |
| per_solve_options.D = D_.get(); |
| regularized_solve_summary = |
| solver->Solve(transformed_A.get(), |
| b_.get(), |
| per_solve_options, |
| x_regularized.data()); |
| |
| EXPECT_EQ(unregularized_solve_summary.termination_type, |
| LINEAR_SOLVER_SUCCESS); |
| |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| EXPECT_NEAR(sol_unregularized_[i], x_unregularized[i], 1e-8) |
| << "\nExpected: " |
| << ConstVectorRef(sol_unregularized_.get(), |
| A_->num_cols()).transpose() |
| << "\nActual: " << x_unregularized.transpose(); |
| } |
| |
| EXPECT_EQ(regularized_solve_summary.termination_type, |
| LINEAR_SOLVER_SUCCESS); |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| EXPECT_NEAR(sol_regularized_[i], x_regularized[i], 1e-8) |
| << "\nExpected: " |
| << ConstVectorRef(sol_regularized_.get(), A_->num_cols()).transpose() |
| << "\nActual: " << x_regularized.transpose(); |
| } |
| } |
| |
| scoped_ptr<TripletSparseMatrix> A_; |
| scoped_array<double> b_; |
| scoped_array<double> D_; |
| scoped_array<double> sol_unregularized_; |
| scoped_array<double> sol_regularized_; |
| }; |
| |
| TEST_F(UnsymmetricLinearSolverTest, EigenDenseQR) { |
| LinearSolver::Options options; |
| options.type = DENSE_QR; |
| options.dense_linear_algebra_library_type = EIGEN; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, EigenDenseNormalCholesky) { |
| LinearSolver::Options options; |
| options.dense_linear_algebra_library_type = EIGEN; |
| options.type = DENSE_NORMAL_CHOLESKY; |
| TestSolver(options); |
| } |
| |
| #ifndef CERES_NO_LAPACK |
| TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseQR) { |
| LinearSolver::Options options; |
| options.type = DENSE_QR; |
| options.dense_linear_algebra_library_type = LAPACK; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseNormalCholesky) { |
| LinearSolver::Options options; |
| options.dense_linear_algebra_library_type = LAPACK; |
| options.type = DENSE_NORMAL_CHOLESKY; |
| TestSolver(options); |
| } |
| #endif |
| |
| #ifndef CERES_NO_SUITESPARSE |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingSuiteSparsePreOrdering) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.use_postordering = false; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingSuiteSparsePostOrdering) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.use_postordering = true; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingSuiteSparseDynamicSparsity) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.dynamic_sparsity = true; |
| TestSolver(options); |
| } |
| #endif |
| |
| #ifndef CERES_NO_CXSPARSE |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingCXSparsePreOrdering) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = CX_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.use_postordering = false; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingCXSparsePostOrdering) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = CX_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.use_postordering = true; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingCXSparseDynamicSparsity) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = CX_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.dynamic_sparsity = true; |
| TestSolver(options); |
| } |
| #endif |
| |
| #ifdef CERES_USE_EIGEN_SPARSE |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingEigenPreOrdering) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.use_postordering = false; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingEigenPostOrdering) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.use_postordering = true; |
| TestSolver(options); |
| } |
| |
| TEST_F(UnsymmetricLinearSolverTest, |
| SparseNormalCholeskyUsingEigenDynamicSparsity) { |
| LinearSolver::Options options; |
| options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| options.type = SPARSE_NORMAL_CHOLESKY; |
| options.dynamic_sparsity = true; |
| TestSolver(options); |
| } |
| |
| #endif // CERES_USE_EIGEN_SPARSE |
| |
| } // namespace internal |
| } // namespace ceres |