|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  |  | 
|  | #include <cstdio> | 
|  | #include <string> | 
|  | #include <vector> | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/file.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/matrix_proto.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromId(int id) { | 
|  | switch (id) { | 
|  | case 0: | 
|  | return LinearLeastSquaresProblem0(); | 
|  | case 1: | 
|  | return LinearLeastSquaresProblem1(); | 
|  | case 2: | 
|  | return LinearLeastSquaresProblem2(); | 
|  | case 3: | 
|  | return LinearLeastSquaresProblem3(); | 
|  | default: | 
|  | LOG(FATAL) << "Unknown problem id requested " << id; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifndef CERES_NO_PROTOCOL_BUFFERS | 
|  | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromFile( | 
|  | const string& filename) { | 
|  | LinearLeastSquaresProblemProto problem_proto; | 
|  | { | 
|  | string serialized_proto; | 
|  | ReadFileToStringOrDie(filename, &serialized_proto); | 
|  | CHECK(problem_proto.ParseFromString(serialized_proto)); | 
|  | } | 
|  |  | 
|  | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
|  | const SparseMatrixProto& A = problem_proto.a(); | 
|  |  | 
|  | if (A.has_block_matrix()) { | 
|  | problem->A.reset(new BlockSparseMatrix(A)); | 
|  | } else if (A.has_triplet_matrix()) { | 
|  | problem->A.reset(new TripletSparseMatrix(A)); | 
|  | } else { | 
|  | problem->A.reset(new CompressedRowSparseMatrix(A)); | 
|  | } | 
|  |  | 
|  | if (problem_proto.b_size() > 0) { | 
|  | problem->b.reset(new double[problem_proto.b_size()]); | 
|  | for (int i = 0; i < problem_proto.b_size(); ++i) { | 
|  | problem->b[i] = problem_proto.b(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (problem_proto.d_size() > 0) { | 
|  | problem->D.reset(new double[problem_proto.d_size()]); | 
|  | for (int i = 0; i < problem_proto.d_size(); ++i) { | 
|  | problem->D[i] = problem_proto.d(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (problem_proto.d_size() > 0) { | 
|  | if (problem_proto.x_size() > 0) { | 
|  | problem->x_D.reset(new double[problem_proto.x_size()]); | 
|  | for (int i = 0; i < problem_proto.x_size(); ++i) { | 
|  | problem->x_D[i] = problem_proto.x(i); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (problem_proto.x_size() > 0) { | 
|  | problem->x.reset(new double[problem_proto.x_size()]); | 
|  | for (int i = 0; i < problem_proto.x_size(); ++i) { | 
|  | problem->x[i] = problem_proto.x(i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | problem->num_eliminate_blocks = 0; | 
|  | if (problem_proto.has_num_eliminate_blocks()) { | 
|  | problem->num_eliminate_blocks = problem_proto.num_eliminate_blocks(); | 
|  | } | 
|  |  | 
|  | return problem; | 
|  | } | 
|  | #else | 
|  | LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromFile( | 
|  | const string& filename) { | 
|  | LOG(FATAL) | 
|  | << "Loading a least squares problem from disk requires " | 
|  | << "Ceres to be built with Protocol Buffers support."; | 
|  | return NULL; | 
|  | } | 
|  | #endif  // CERES_NO_PROTOCOL_BUFFERS | 
|  |  | 
|  | /* | 
|  | A = [1   2] | 
|  | [3   4] | 
|  | [6 -10] | 
|  |  | 
|  | b = [  8 | 
|  | 18 | 
|  | -18] | 
|  |  | 
|  | x = [2 | 
|  | 3] | 
|  |  | 
|  | D = [1 | 
|  | 2] | 
|  |  | 
|  | x_D = [1.78448275; | 
|  | 2.82327586;] | 
|  | */ | 
|  | LinearLeastSquaresProblem* LinearLeastSquaresProblem0() { | 
|  | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
|  |  | 
|  | TripletSparseMatrix* A = new TripletSparseMatrix(3, 2, 6); | 
|  | problem->b.reset(new double[3]); | 
|  | problem->D.reset(new double[2]); | 
|  |  | 
|  | problem->x.reset(new double[2]); | 
|  | problem->x_D.reset(new double[2]); | 
|  |  | 
|  | int* Ai = A->mutable_rows(); | 
|  | int* Aj = A->mutable_cols(); | 
|  | double* Ax = A->mutable_values(); | 
|  |  | 
|  | int counter = 0; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j< 2; ++j) { | 
|  | Ai[counter]=i; | 
|  | Aj[counter]=j; | 
|  | ++counter; | 
|  | } | 
|  | }; | 
|  |  | 
|  | Ax[0] = 1.; | 
|  | Ax[1] = 2.; | 
|  | Ax[2] = 3.; | 
|  | Ax[3] = 4.; | 
|  | Ax[4] = 6; | 
|  | Ax[5] = -10; | 
|  | A->set_num_nonzeros(6); | 
|  | problem->A.reset(A); | 
|  |  | 
|  | problem->b[0] = 8; | 
|  | problem->b[1] = 18; | 
|  | problem->b[2] = -18; | 
|  |  | 
|  | problem->x[0] = 2.0; | 
|  | problem->x[1] = 3.0; | 
|  |  | 
|  | problem->D[0] = 1; | 
|  | problem->D[1] = 2; | 
|  |  | 
|  | problem->x_D[0] = 1.78448275; | 
|  | problem->x_D[1] = 2.82327586; | 
|  | return problem; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | A = [1 0  | 2 0 0 | 
|  | 3 0  | 0 4 0 | 
|  | 0 5  | 0 0 6 | 
|  | 0 7  | 8 0 0 | 
|  | 0 9  | 1 0 0 | 
|  | 0 0  | 1 1 1] | 
|  |  | 
|  | b = [0 | 
|  | 1 | 
|  | 2 | 
|  | 3 | 
|  | 4 | 
|  | 5] | 
|  |  | 
|  | c = A'* b = [ 3 | 
|  | 67 | 
|  | 33 | 
|  | 9 | 
|  | 17] | 
|  |  | 
|  | A'A = [10    0    2   12   0 | 
|  | 0  155   65    0  30 | 
|  | 2   65   70    1   1 | 
|  | 12    0    1   17   1 | 
|  | 0   30    1    1  37] | 
|  |  | 
|  | S = [ 42.3419  -1.4000  -11.5806 | 
|  | -1.4000   2.6000    1.0000 | 
|  | 11.5806   1.0000   31.1935] | 
|  |  | 
|  | r = [ 4.3032 | 
|  | 5.4000 | 
|  | 5.0323] | 
|  |  | 
|  | S\r = [ 0.2102 | 
|  | 2.1367 | 
|  | 0.1388] | 
|  |  | 
|  | A\b = [-2.3061 | 
|  | 0.3172 | 
|  | 0.2102 | 
|  | 2.1367 | 
|  | 0.1388] | 
|  | */ | 
|  | // The following two functions create a TripletSparseMatrix and a | 
|  | // BlockSparseMatrix version of this problem. | 
|  |  | 
|  | // TripletSparseMatrix version. | 
|  | LinearLeastSquaresProblem* LinearLeastSquaresProblem1() { | 
|  | int num_rows = 6; | 
|  | int num_cols = 5; | 
|  |  | 
|  | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
|  | TripletSparseMatrix* A = new TripletSparseMatrix(num_rows, | 
|  | num_cols, | 
|  | num_rows * num_cols); | 
|  | problem->b.reset(new double[num_rows]); | 
|  | problem->D.reset(new double[num_cols]); | 
|  | problem->num_eliminate_blocks = 2; | 
|  |  | 
|  | int* rows = A->mutable_rows(); | 
|  | int* cols = A->mutable_cols(); | 
|  | double* values = A->mutable_values(); | 
|  |  | 
|  | int nnz = 0; | 
|  |  | 
|  | // Row 1 | 
|  | { | 
|  | rows[nnz] = 0; | 
|  | cols[nnz] = 0; | 
|  | values[nnz++] = 1; | 
|  |  | 
|  | rows[nnz] = 0; | 
|  | cols[nnz] = 2; | 
|  | values[nnz++] = 2; | 
|  | } | 
|  |  | 
|  | // Row 2 | 
|  | { | 
|  | rows[nnz] = 1; | 
|  | cols[nnz] = 0; | 
|  | values[nnz++] = 3; | 
|  |  | 
|  | rows[nnz] = 1; | 
|  | cols[nnz] = 3; | 
|  | values[nnz++] = 4; | 
|  | } | 
|  |  | 
|  | // Row 3 | 
|  | { | 
|  | rows[nnz] = 2; | 
|  | cols[nnz] = 1; | 
|  | values[nnz++] = 5; | 
|  |  | 
|  | rows[nnz] = 2; | 
|  | cols[nnz] = 4; | 
|  | values[nnz++] = 6; | 
|  | } | 
|  |  | 
|  | // Row 4 | 
|  | { | 
|  | rows[nnz] = 3; | 
|  | cols[nnz] = 1; | 
|  | values[nnz++] = 7; | 
|  |  | 
|  | rows[nnz] = 3; | 
|  | cols[nnz] = 2; | 
|  | values[nnz++] = 8; | 
|  | } | 
|  |  | 
|  | // Row 5 | 
|  | { | 
|  | rows[nnz] = 4; | 
|  | cols[nnz] = 1; | 
|  | values[nnz++] = 9; | 
|  |  | 
|  | rows[nnz] = 4; | 
|  | cols[nnz] = 2; | 
|  | values[nnz++] = 1; | 
|  | } | 
|  |  | 
|  | // Row 6 | 
|  | { | 
|  | rows[nnz] = 5; | 
|  | cols[nnz] = 2; | 
|  | values[nnz++] = 1; | 
|  |  | 
|  | rows[nnz] = 5; | 
|  | cols[nnz] = 3; | 
|  | values[nnz++] = 1; | 
|  |  | 
|  | rows[nnz] = 5; | 
|  | cols[nnz] = 4; | 
|  | values[nnz++] = 1; | 
|  | } | 
|  |  | 
|  | A->set_num_nonzeros(nnz); | 
|  | CHECK(A->IsValid()); | 
|  |  | 
|  | problem->A.reset(A); | 
|  |  | 
|  | for (int i = 0; i < num_cols; ++i) { | 
|  | problem->D.get()[i] = 1; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | problem->b.get()[i] = i; | 
|  | } | 
|  |  | 
|  | return problem; | 
|  | } | 
|  |  | 
|  | // BlockSparseMatrix version | 
|  | LinearLeastSquaresProblem* LinearLeastSquaresProblem2() { | 
|  | int num_rows = 6; | 
|  | int num_cols = 5; | 
|  |  | 
|  | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
|  |  | 
|  | problem->b.reset(new double[num_rows]); | 
|  | problem->D.reset(new double[num_cols]); | 
|  | problem->num_eliminate_blocks = 2; | 
|  |  | 
|  | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
|  | scoped_array<double> values(new double[num_rows * num_cols]); | 
|  |  | 
|  | for (int c = 0; c < num_cols; ++c) { | 
|  | bs->cols.push_back(Block()); | 
|  | bs->cols.back().size = 1; | 
|  | bs->cols.back().position = c; | 
|  | } | 
|  |  | 
|  | int nnz = 0; | 
|  |  | 
|  | // Row 1 | 
|  | { | 
|  | values[nnz++] = 1; | 
|  | values[nnz++] = 2; | 
|  |  | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 0; | 
|  | row.cells.push_back(Cell(0, 0)); | 
|  | row.cells.push_back(Cell(2, 1)); | 
|  | } | 
|  |  | 
|  | // Row 2 | 
|  | { | 
|  | values[nnz++] = 3; | 
|  | values[nnz++] = 4; | 
|  |  | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 1; | 
|  | row.cells.push_back(Cell(0, 2)); | 
|  | row.cells.push_back(Cell(3, 3)); | 
|  | } | 
|  |  | 
|  | // Row 3 | 
|  | { | 
|  | values[nnz++] = 5; | 
|  | values[nnz++] = 6; | 
|  |  | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 2; | 
|  | row.cells.push_back(Cell(1, 4)); | 
|  | row.cells.push_back(Cell(4, 5)); | 
|  | } | 
|  |  | 
|  | // Row 4 | 
|  | { | 
|  | values[nnz++] = 7; | 
|  | values[nnz++] = 8; | 
|  |  | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 3; | 
|  | row.cells.push_back(Cell(1, 6)); | 
|  | row.cells.push_back(Cell(2, 7)); | 
|  | } | 
|  |  | 
|  | // Row 5 | 
|  | { | 
|  | values[nnz++] = 9; | 
|  | values[nnz++] = 1; | 
|  |  | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 4; | 
|  | row.cells.push_back(Cell(1, 8)); | 
|  | row.cells.push_back(Cell(2, 9)); | 
|  | } | 
|  |  | 
|  | // Row 6 | 
|  | { | 
|  | values[nnz++] = 1; | 
|  | values[nnz++] = 1; | 
|  | values[nnz++] = 1; | 
|  |  | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 5; | 
|  | row.cells.push_back(Cell(2, 10)); | 
|  | row.cells.push_back(Cell(3, 11)); | 
|  | row.cells.push_back(Cell(4, 12)); | 
|  | } | 
|  |  | 
|  | BlockSparseMatrix* A = new BlockSparseMatrix(bs); | 
|  | memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); | 
|  |  | 
|  | for (int i = 0; i < num_cols; ++i) { | 
|  | problem->D.get()[i] = 1; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | problem->b.get()[i] = i; | 
|  | } | 
|  |  | 
|  | problem->A.reset(A); | 
|  |  | 
|  | return problem; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | A = [1 0 | 
|  | 3 0 | 
|  | 0 5 | 
|  | 0 7 | 
|  | 0 9 | 
|  | 0 0] | 
|  |  | 
|  | b = [0 | 
|  | 1 | 
|  | 2 | 
|  | 3 | 
|  | 4 | 
|  | 5] | 
|  | */ | 
|  | // BlockSparseMatrix version | 
|  | LinearLeastSquaresProblem* LinearLeastSquaresProblem3() { | 
|  | int num_rows = 5; | 
|  | int num_cols = 2; | 
|  |  | 
|  | LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem; | 
|  |  | 
|  | problem->b.reset(new double[num_rows]); | 
|  | problem->D.reset(new double[num_cols]); | 
|  | problem->num_eliminate_blocks = 2; | 
|  |  | 
|  | CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
|  | scoped_array<double> values(new double[num_rows * num_cols]); | 
|  |  | 
|  | for (int c = 0; c < num_cols; ++c) { | 
|  | bs->cols.push_back(Block()); | 
|  | bs->cols.back().size = 1; | 
|  | bs->cols.back().position = c; | 
|  | } | 
|  |  | 
|  | int nnz = 0; | 
|  |  | 
|  | // Row 1 | 
|  | { | 
|  | values[nnz++] = 1; | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 0; | 
|  | row.cells.push_back(Cell(0, 0)); | 
|  | } | 
|  |  | 
|  | // Row 2 | 
|  | { | 
|  | values[nnz++] = 3; | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 1; | 
|  | row.cells.push_back(Cell(0, 1)); | 
|  | } | 
|  |  | 
|  | // Row 3 | 
|  | { | 
|  | values[nnz++] = 5; | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 2; | 
|  | row.cells.push_back(Cell(1, 2)); | 
|  | } | 
|  |  | 
|  | // Row 4 | 
|  | { | 
|  | values[nnz++] = 7; | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 3; | 
|  | row.cells.push_back(Cell(1, 3)); | 
|  | } | 
|  |  | 
|  | // Row 5 | 
|  | { | 
|  | values[nnz++] = 9; | 
|  | bs->rows.push_back(CompressedRow()); | 
|  | CompressedRow& row = bs->rows.back(); | 
|  | row.block.size = 1; | 
|  | row.block.position = 4; | 
|  | row.cells.push_back(Cell(1, 4)); | 
|  | } | 
|  |  | 
|  | BlockSparseMatrix* A = new BlockSparseMatrix(bs); | 
|  | memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values())); | 
|  |  | 
|  | for (int i = 0; i < num_cols; ++i) { | 
|  | problem->D.get()[i] = 1; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | problem->b.get()[i] = i; | 
|  | } | 
|  |  | 
|  | problem->A.reset(A); | 
|  |  | 
|  | return problem; | 
|  | } | 
|  |  | 
|  | bool DumpLinearLeastSquaresProblemToConsole(const string& directory, | 
|  | int iteration, | 
|  | const SparseMatrix* A, | 
|  | const double* D, | 
|  | const double* b, | 
|  | const double* x, | 
|  | int num_eliminate_blocks) { | 
|  | CHECK_NOTNULL(A); | 
|  | Matrix AA; | 
|  | A->ToDenseMatrix(&AA); | 
|  | LOG(INFO) << "A^T: \n" << AA.transpose(); | 
|  |  | 
|  | if (D != NULL) { | 
|  | LOG(INFO) << "A's appended diagonal:\n" | 
|  | << ConstVectorRef(D, A->num_cols()); | 
|  | } | 
|  |  | 
|  | if (b != NULL) { | 
|  | LOG(INFO) << "b: \n" << ConstVectorRef(b, A->num_rows()); | 
|  | } | 
|  |  | 
|  | if (x != NULL) { | 
|  | LOG(INFO) << "x: \n" << ConstVectorRef(x, A->num_cols()); | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | #ifndef CERES_NO_PROTOCOL_BUFFERS | 
|  | bool DumpLinearLeastSquaresProblemToProtocolBuffer(const string& directory, | 
|  | int iteration, | 
|  | const SparseMatrix* A, | 
|  | const double* D, | 
|  | const double* b, | 
|  | const double* x, | 
|  | int num_eliminate_blocks) { | 
|  | CHECK_NOTNULL(A); | 
|  | LinearLeastSquaresProblemProto lsqp; | 
|  | A->ToProto(lsqp.mutable_a()); | 
|  |  | 
|  | if (D != NULL) { | 
|  | for (int i = 0; i < A->num_cols(); ++i) { | 
|  | lsqp.add_d(D[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (b != NULL) { | 
|  | for (int i = 0; i < A->num_rows(); ++i) { | 
|  | lsqp.add_b(b[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (x != NULL) { | 
|  | for (int i = 0; i < A->num_cols(); ++i) { | 
|  | lsqp.add_x(x[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | lsqp.set_num_eliminate_blocks(num_eliminate_blocks); | 
|  | string format_string = JoinPath(directory, | 
|  | "lm_iteration_%03d.lsqp"); | 
|  | string filename = | 
|  | StringPrintf(format_string.c_str(),  iteration); | 
|  | LOG(INFO) << "Dumping least squares problem for iteration " << iteration | 
|  | << " to disk. File: " << filename; | 
|  | WriteStringToFileOrDie(lsqp.SerializeAsString(), filename); | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | bool DumpLinearLeastSquaresProblemToProtocolBuffer(const string& directory, | 
|  | int iteration, | 
|  | const SparseMatrix* A, | 
|  | const double* D, | 
|  | const double* b, | 
|  | const double* x, | 
|  | int num_eliminate_blocks) { | 
|  | LOG(ERROR) << "Dumping least squares problems is only " | 
|  | << "supported when Ceres is compiled with " | 
|  | << "protocol buffer support."; | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void WriteArrayToFileOrDie(const string& filename, | 
|  | const double* x, | 
|  | const int size) { | 
|  | CHECK_NOTNULL(x); | 
|  | VLOG(2) << "Writing array to: " << filename; | 
|  | FILE* fptr = fopen(filename.c_str(), "w"); | 
|  | CHECK_NOTNULL(fptr); | 
|  | for (int i = 0; i < size; ++i) { | 
|  | fprintf(fptr, "%17f\n", x[i]); | 
|  | } | 
|  | fclose(fptr); | 
|  | } | 
|  |  | 
|  | bool DumpLinearLeastSquaresProblemToTextFile(const string& directory, | 
|  | int iteration, | 
|  | const SparseMatrix* A, | 
|  | const double* D, | 
|  | const double* b, | 
|  | const double* x, | 
|  | int num_eliminate_blocks) { | 
|  | CHECK_NOTNULL(A); | 
|  | string format_string = JoinPath(directory, | 
|  | "lm_iteration_%03d"); | 
|  | string filename_prefix = | 
|  | StringPrintf(format_string.c_str(), iteration); | 
|  |  | 
|  | LOG(INFO) << "writing to: " << filename_prefix << "*"; | 
|  |  | 
|  | string matlab_script; | 
|  | StringAppendF(&matlab_script, | 
|  | "function lsqp = lm_iteration_%03d()\n", iteration); | 
|  | StringAppendF(&matlab_script, | 
|  | "lsqp.num_rows = %d;\n", A->num_rows()); | 
|  | StringAppendF(&matlab_script, | 
|  | "lsqp.num_cols = %d;\n", A->num_cols()); | 
|  |  | 
|  | { | 
|  | string filename = filename_prefix + "_A.txt"; | 
|  | FILE* fptr = fopen(filename.c_str(), "w"); | 
|  | CHECK_NOTNULL(fptr); | 
|  | A->ToTextFile(fptr); | 
|  | fclose(fptr); | 
|  | StringAppendF(&matlab_script, | 
|  | "tmp = load('%s', '-ascii');\n", filename.c_str()); | 
|  | StringAppendF( | 
|  | &matlab_script, | 
|  | "lsqp.A = sparse(tmp(:, 1) + 1, tmp(:, 2) + 1, tmp(:, 3), %d, %d);\n", | 
|  | A->num_rows(), | 
|  | A->num_cols()); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (D != NULL) { | 
|  | string filename = filename_prefix + "_D.txt"; | 
|  | WriteArrayToFileOrDie(filename, D, A->num_cols()); | 
|  | StringAppendF(&matlab_script, | 
|  | "lsqp.D = load('%s', '-ascii');\n", filename.c_str()); | 
|  | } | 
|  |  | 
|  | if (b != NULL) { | 
|  | string filename = filename_prefix + "_b.txt"; | 
|  | WriteArrayToFileOrDie(filename, b, A->num_rows()); | 
|  | StringAppendF(&matlab_script, | 
|  | "lsqp.b = load('%s', '-ascii');\n", filename.c_str()); | 
|  | } | 
|  |  | 
|  | if (x != NULL) { | 
|  | string filename = filename_prefix + "_x.txt"; | 
|  | WriteArrayToFileOrDie(filename, x, A->num_cols()); | 
|  | StringAppendF(&matlab_script, | 
|  | "lsqp.x = load('%s', '-ascii');\n", filename.c_str()); | 
|  | } | 
|  |  | 
|  | string matlab_filename = filename_prefix + ".m"; | 
|  | WriteStringToFileOrDie(matlab_script, matlab_filename); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DumpLinearLeastSquaresProblem(const string& directory, | 
|  | int iteration, | 
|  | DumpFormatType dump_format_type, | 
|  | const SparseMatrix* A, | 
|  | const double* D, | 
|  | const double* b, | 
|  | const double* x, | 
|  | int num_eliminate_blocks) { | 
|  | switch (dump_format_type) { | 
|  | case (CONSOLE): | 
|  | return DumpLinearLeastSquaresProblemToConsole(directory, | 
|  | iteration, | 
|  | A, D, b, x, | 
|  | num_eliminate_blocks); | 
|  | case (PROTOBUF): | 
|  | return DumpLinearLeastSquaresProblemToProtocolBuffer( | 
|  | directory, | 
|  | iteration, | 
|  | A, D, b, x, | 
|  | num_eliminate_blocks); | 
|  | case (TEXTFILE): | 
|  | return DumpLinearLeastSquaresProblemToTextFile(directory, | 
|  | iteration, | 
|  | A, D, b, x, | 
|  | num_eliminate_blocks); | 
|  | default: | 
|  | LOG(FATAL) << "Unknown DumpFormatType " << dump_format_type; | 
|  | }; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |