| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) |
| // |
| // A CUDA sparse matrix linear operator. |
| |
| #ifndef CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_ |
| #define CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_ |
| |
| // This include must come before any #ifndef check on Ceres compile options. |
| // clang-format off |
| #include "ceres/internal/config.h" |
| // clang-format on |
| |
| #include <cstdint> |
| #include <memory> |
| #include <string> |
| |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/context_impl.h" |
| #include "ceres/internal/export.h" |
| #include "ceres/types.h" |
| |
| #ifndef CERES_NO_CUDA |
| #include "ceres/cuda_buffer.h" |
| #include "ceres/cuda_vector.h" |
| #include "cusparse.h" |
| |
| namespace ceres::internal { |
| |
| // A sparse matrix hosted on the GPU in compressed row sparse format, with |
| // CUDA-accelerated operations. |
| // The user of the class must ensure that ContextImpl::InitCuda() has already |
| // been successfully called before using this class. |
| class CERES_NO_EXPORT CudaSparseMatrix { |
| public: |
| // Create a GPU copy of the matrix provided. |
| CudaSparseMatrix(ContextImpl* context, |
| const CompressedRowSparseMatrix& crs_matrix); |
| |
| // Create matrix from existing row and column index buffers. |
| // Values are left uninitialized. |
| CudaSparseMatrix(int num_cols, |
| CudaBuffer<int32_t>&& rows, |
| CudaBuffer<int32_t>&& cols, |
| ContextImpl* context); |
| |
| ~CudaSparseMatrix(); |
| |
| // Left/right products are using internal buffer and are not thread-safe |
| // y = y + Ax; |
| void RightMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const; |
| // y = y + A'x; |
| void LeftMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const; |
| |
| int num_rows() const { return num_rows_; } |
| int num_cols() const { return num_cols_; } |
| int num_nonzeros() const { return num_nonzeros_; } |
| |
| const int32_t* rows() const { return rows_.data(); } |
| const int32_t* cols() const { return cols_.data(); } |
| const double* values() const { return values_.data(); } |
| |
| int32_t* mutable_rows() { return rows_.data(); } |
| int32_t* mutable_cols() { return cols_.data(); } |
| double* mutable_values() { return values_.data(); } |
| |
| // If subsequent uses of this matrix involve only numerical changes and no |
| // structural changes, then this method can be used to copy the updated |
| // non-zero values -- the row and column index arrays are kept the same. It |
| // is the caller's responsibility to ensure that the sparsity structure of the |
| // matrix is unchanged. |
| void CopyValuesFromCpu(const CompressedRowSparseMatrix& crs_matrix); |
| |
| const cusparseSpMatDescr_t& descr() const { return descr_; } |
| |
| private: |
| // Disable copy and assignment. |
| CudaSparseMatrix(const CudaSparseMatrix&) = delete; |
| CudaSparseMatrix& operator=(const CudaSparseMatrix&) = delete; |
| |
| // Allocate temporary buffer for left/right products, create cuSPARSE |
| // descriptors |
| void Initialize(); |
| |
| // y = y + op(M)x. op must be either CUSPARSE_OPERATION_NON_TRANSPOSE or |
| // CUSPARSE_OPERATION_TRANSPOSE. |
| void SpMv(cusparseOperation_t op, |
| const cusparseDnVecDescr_t& x, |
| const cusparseDnVecDescr_t& y) const; |
| |
| int num_rows_ = 0; |
| int num_cols_ = 0; |
| int num_nonzeros_ = 0; |
| |
| ContextImpl* context_ = nullptr; |
| // CSR row indices. |
| CudaBuffer<int32_t> rows_; |
| // CSR column indices. |
| CudaBuffer<int32_t> cols_; |
| // CSR values. |
| CudaBuffer<double> values_; |
| |
| // CuSparse object that describes this matrix. |
| cusparseSpMatDescr_t descr_ = nullptr; |
| |
| // Dense vector descriptors for pointer interface |
| cusparseDnVecDescr_t descr_vec_left_ = nullptr; |
| cusparseDnVecDescr_t descr_vec_right_ = nullptr; |
| |
| mutable CudaBuffer<uint8_t> spmv_buffer_; |
| }; |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |
| #endif // CERES_INTERNAL_CUDA_SPARSE_MATRIX_H_ |