| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2024 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: thadh@gmail.com (Thad Hughes) |
| // mierle@gmail.com (Keir Mierle) |
| // sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/dynamic_autodiff_cost_function.h" |
| |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "ceres/cost_function.h" |
| #include "ceres/types.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| // Takes 2 parameter blocks: |
| // parameters[0] is size 10. |
| // parameters[1] is size 5. |
| // Emits 21 residuals: |
| // A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals |
| // B: parameters[0][i] - i, for i in [0,10) -- this is another 10. |
| // C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i]) |
| class MyCostFunctor { |
| public: |
| template <typename T> |
| bool operator()(T const* const* parameters, T* residuals) const { |
| const T* params0 = parameters[0]; |
| int r = 0; |
| for (int i = 0; i < 10; ++i) { |
| residuals[r++] = T(i) - params0[i]; |
| residuals[r++] = params0[i] - T(i); |
| } |
| |
| T c_residual(0.0); |
| for (int i = 0; i < 10; ++i) { |
| c_residual += pow(params0[i], 2) - T(8) * params0[i]; |
| } |
| |
| const T* params1 = parameters[1]; |
| for (int i = 0; i < 5; ++i) { |
| c_residual += params1[i]; |
| } |
| residuals[r++] = c_residual; |
| return true; |
| } |
| }; |
| |
| TEST(DynamicAutodiffCostFunctionTest, TestResiduals) { |
| std::vector<double> param_block_0(10, 0.0); |
| std::vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Test residual computation. |
| std::vector<double> residuals(21, -100000); |
| std::vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| EXPECT_TRUE( |
| cost_function.Evaluate(¶meter_blocks[0], residuals.data(), nullptr)); |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(0, residuals.at(20)); |
| } |
| |
| TEST(DynamicAutodiffCostFunctionTest, TestJacobian) { |
| // Test the residual counting. |
| std::vector<double> param_block_0(10, 0.0); |
| for (int i = 0; i < 10; ++i) { |
| param_block_0[i] = 2 * i; |
| } |
| std::vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Prepare the residuals. |
| std::vector<double> residuals(21, -100000); |
| |
| // Prepare the parameters. |
| std::vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| |
| // Prepare the jacobian. |
| std::vector<std::vector<double>> jacobian_vect(2); |
| jacobian_vect[0].resize(21 * 10, -100000); |
| jacobian_vect[1].resize(21 * 5, -100000); |
| std::vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect[0].data()); |
| jacobian.push_back(jacobian_vect[1].data()); |
| |
| // Test jacobian computation. |
| EXPECT_TRUE(cost_function.Evaluate( |
| parameter_blocks.data(), residuals.data(), jacobian.data())); |
| |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(420, residuals.at(20)); |
| for (int p = 0; p < 10; ++p) { |
| // Check "A" Jacobian. |
| EXPECT_EQ(-1.0, jacobian_vect[0][2 * p * 10 + p]); |
| // Check "B" Jacobian. |
| EXPECT_EQ(+1.0, jacobian_vect[0][(2 * p + 1) * 10 + p]); |
| jacobian_vect[0][2 * p * 10 + p] = 0.0; |
| jacobian_vect[0][(2 * p + 1) * 10 + p] = 0.0; |
| } |
| |
| // Check "C" Jacobian for first parameter block. |
| for (int p = 0; p < 10; ++p) { |
| EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| jacobian_vect[0][20 * 10 + p] = 0.0; |
| } |
| for (double entry : jacobian_vect[0]) { |
| EXPECT_EQ(0.0, entry); |
| } |
| |
| // Check "C" Jacobian for second parameter block. |
| for (int p = 0; p < 5; ++p) { |
| EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| jacobian_vect[1][20 * 5 + p] = 0.0; |
| } |
| for (double entry : jacobian_vect[1]) { |
| EXPECT_EQ(0.0, entry); |
| } |
| } |
| |
| TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) { |
| // Test the residual counting. |
| std::vector<double> param_block_0(10, 0.0); |
| for (int i = 0; i < 10; ++i) { |
| param_block_0[i] = 2 * i; |
| } |
| std::vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Prepare the residuals. |
| std::vector<double> residuals(21, -100000); |
| |
| // Prepare the parameters. |
| std::vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| |
| // Prepare the jacobian. |
| std::vector<std::vector<double>> jacobian_vect(2); |
| jacobian_vect[0].resize(21 * 10, -100000); |
| jacobian_vect[1].resize(21 * 5, -100000); |
| std::vector<double*> jacobian; |
| jacobian.push_back(nullptr); |
| jacobian.push_back(jacobian_vect[1].data()); |
| |
| // Test jacobian computation. |
| EXPECT_TRUE(cost_function.Evaluate( |
| parameter_blocks.data(), residuals.data(), jacobian.data())); |
| |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(420, residuals.at(20)); |
| |
| // Check "C" Jacobian for second parameter block. |
| for (int p = 0; p < 5; ++p) { |
| EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]); |
| jacobian_vect[1][20 * 5 + p] = 0.0; |
| } |
| for (double& i : jacobian_vect[1]) { |
| EXPECT_EQ(0.0, i); |
| } |
| } |
| |
| TEST(DynamicAutodiffCostFunctionTest, |
| JacobianWithSecondParameterBlockConstant) { // NOLINT |
| // Test the residual counting. |
| std::vector<double> param_block_0(10, 0.0); |
| for (int i = 0; i < 10; ++i) { |
| param_block_0[i] = 2 * i; |
| } |
| std::vector<double> param_block_1(5, 0.0); |
| DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function( |
| new MyCostFunctor()); |
| cost_function.AddParameterBlock(param_block_0.size()); |
| cost_function.AddParameterBlock(param_block_1.size()); |
| cost_function.SetNumResiduals(21); |
| |
| // Prepare the residuals. |
| std::vector<double> residuals(21, -100000); |
| |
| // Prepare the parameters. |
| std::vector<double*> parameter_blocks(2); |
| parameter_blocks[0] = ¶m_block_0[0]; |
| parameter_blocks[1] = ¶m_block_1[0]; |
| |
| // Prepare the jacobian. |
| std::vector<std::vector<double>> jacobian_vect(2); |
| jacobian_vect[0].resize(21 * 10, -100000); |
| jacobian_vect[1].resize(21 * 5, -100000); |
| std::vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect[0].data()); |
| jacobian.push_back(nullptr); |
| |
| // Test jacobian computation. |
| EXPECT_TRUE(cost_function.Evaluate( |
| parameter_blocks.data(), residuals.data(), jacobian.data())); |
| |
| for (int r = 0; r < 10; ++r) { |
| EXPECT_EQ(-1.0 * r, residuals.at(r * 2)); |
| EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1)); |
| } |
| EXPECT_EQ(420, residuals.at(20)); |
| for (int p = 0; p < 10; ++p) { |
| // Check "A" Jacobian. |
| EXPECT_EQ(-1.0, jacobian_vect[0][2 * p * 10 + p]); |
| // Check "B" Jacobian. |
| EXPECT_EQ(+1.0, jacobian_vect[0][(2 * p + 1) * 10 + p]); |
| jacobian_vect[0][2 * p * 10 + p] = 0.0; |
| jacobian_vect[0][(2 * p + 1) * 10 + p] = 0.0; |
| } |
| |
| // Check "C" Jacobian for first parameter block. |
| for (int p = 0; p < 10; ++p) { |
| EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]); |
| jacobian_vect[0][20 * 10 + p] = 0.0; |
| } |
| for (double& i : jacobian_vect[0]) { |
| EXPECT_EQ(0.0, i); |
| } |
| } |
| |
| // Takes 3 parameter blocks: |
| // parameters[0] (x) is size 1. |
| // parameters[1] (y) is size 2. |
| // parameters[2] (z) is size 3. |
| // Emits 7 residuals: |
| // A: x[0] (= sum_x) |
| // B: y[0] + 2.0 * y[1] (= sum_y) |
| // C: z[0] + 3.0 * z[1] + 6.0 * z[2] (= sum_z) |
| // D: sum_x * sum_y |
| // E: sum_y * sum_z |
| // F: sum_x * sum_z |
| // G: sum_x * sum_y * sum_z |
| class MyThreeParameterCostFunctor { |
| public: |
| template <typename T> |
| bool operator()(T const* const* parameters, T* residuals) const { |
| const T* x = parameters[0]; |
| const T* y = parameters[1]; |
| const T* z = parameters[2]; |
| |
| T sum_x = x[0]; |
| T sum_y = y[0] + 2.0 * y[1]; |
| T sum_z = z[0] + 3.0 * z[1] + 6.0 * z[2]; |
| |
| residuals[0] = sum_x; |
| residuals[1] = sum_y; |
| residuals[2] = sum_z; |
| residuals[3] = sum_x * sum_y; |
| residuals[4] = sum_y * sum_z; |
| residuals[5] = sum_x * sum_z; |
| residuals[6] = sum_x * sum_y * sum_z; |
| return true; |
| } |
| }; |
| |
| class ThreeParameterCostFunctorTest : public ::testing::Test { |
| protected: |
| void SetUp() final { |
| // Prepare the parameters. |
| x_.resize(1); |
| x_[0] = 0.0; |
| |
| y_.resize(2); |
| y_[0] = 1.0; |
| y_[1] = 3.0; |
| |
| z_.resize(3); |
| z_[0] = 2.0; |
| z_[1] = 4.0; |
| z_[2] = 6.0; |
| |
| parameter_blocks_.resize(3); |
| parameter_blocks_[0] = &x_[0]; |
| parameter_blocks_[1] = &y_[0]; |
| parameter_blocks_[2] = &z_[0]; |
| |
| // Prepare the cost function. |
| using DynamicMyThreeParameterCostFunction = |
| DynamicAutoDiffCostFunction<MyThreeParameterCostFunctor, 3>; |
| auto cost_function = std::make_unique<DynamicMyThreeParameterCostFunction>( |
| new MyThreeParameterCostFunctor()); |
| cost_function->AddParameterBlock(1); |
| cost_function->AddParameterBlock(2); |
| cost_function->AddParameterBlock(3); |
| cost_function->SetNumResiduals(7); |
| |
| cost_function_ = std::move(cost_function); |
| |
| // Setup jacobian data. |
| jacobian_vect_.resize(3); |
| jacobian_vect_[0].resize(7 * x_.size(), -100000); |
| jacobian_vect_[1].resize(7 * y_.size(), -100000); |
| jacobian_vect_[2].resize(7 * z_.size(), -100000); |
| |
| // Prepare the expected residuals. |
| const double sum_x = x_[0]; |
| const double sum_y = y_[0] + 2.0 * y_[1]; |
| const double sum_z = z_[0] + 3.0 * z_[1] + 6.0 * z_[2]; |
| |
| expected_residuals_.resize(7); |
| expected_residuals_[0] = sum_x; |
| expected_residuals_[1] = sum_y; |
| expected_residuals_[2] = sum_z; |
| expected_residuals_[3] = sum_x * sum_y; |
| expected_residuals_[4] = sum_y * sum_z; |
| expected_residuals_[5] = sum_x * sum_z; |
| expected_residuals_[6] = sum_x * sum_y * sum_z; |
| |
| // Prepare the expected jacobian entries. |
| expected_jacobian_x_.resize(7); |
| expected_jacobian_x_[0] = 1.0; |
| expected_jacobian_x_[1] = 0.0; |
| expected_jacobian_x_[2] = 0.0; |
| expected_jacobian_x_[3] = sum_y; |
| expected_jacobian_x_[4] = 0.0; |
| expected_jacobian_x_[5] = sum_z; |
| expected_jacobian_x_[6] = sum_y * sum_z; |
| |
| expected_jacobian_y_.resize(14); |
| expected_jacobian_y_[0] = 0.0; |
| expected_jacobian_y_[1] = 0.0; |
| expected_jacobian_y_[2] = 1.0; |
| expected_jacobian_y_[3] = 2.0; |
| expected_jacobian_y_[4] = 0.0; |
| expected_jacobian_y_[5] = 0.0; |
| expected_jacobian_y_[6] = sum_x; |
| expected_jacobian_y_[7] = 2.0 * sum_x; |
| expected_jacobian_y_[8] = sum_z; |
| expected_jacobian_y_[9] = 2.0 * sum_z; |
| expected_jacobian_y_[10] = 0.0; |
| expected_jacobian_y_[11] = 0.0; |
| expected_jacobian_y_[12] = sum_x * sum_z; |
| expected_jacobian_y_[13] = 2.0 * sum_x * sum_z; |
| |
| expected_jacobian_z_.resize(21); |
| expected_jacobian_z_[0] = 0.0; |
| expected_jacobian_z_[1] = 0.0; |
| expected_jacobian_z_[2] = 0.0; |
| expected_jacobian_z_[3] = 0.0; |
| expected_jacobian_z_[4] = 0.0; |
| expected_jacobian_z_[5] = 0.0; |
| expected_jacobian_z_[6] = 1.0; |
| expected_jacobian_z_[7] = 3.0; |
| expected_jacobian_z_[8] = 6.0; |
| expected_jacobian_z_[9] = 0.0; |
| expected_jacobian_z_[10] = 0.0; |
| expected_jacobian_z_[11] = 0.0; |
| expected_jacobian_z_[12] = sum_y; |
| expected_jacobian_z_[13] = 3.0 * sum_y; |
| expected_jacobian_z_[14] = 6.0 * sum_y; |
| expected_jacobian_z_[15] = sum_x; |
| expected_jacobian_z_[16] = 3.0 * sum_x; |
| expected_jacobian_z_[17] = 6.0 * sum_x; |
| expected_jacobian_z_[18] = sum_x * sum_y; |
| expected_jacobian_z_[19] = 3.0 * sum_x * sum_y; |
| expected_jacobian_z_[20] = 6.0 * sum_x * sum_y; |
| } |
| |
| protected: |
| std::vector<double> x_; |
| std::vector<double> y_; |
| std::vector<double> z_; |
| |
| std::vector<double*> parameter_blocks_; |
| |
| std::unique_ptr<CostFunction> cost_function_; |
| |
| std::vector<std::vector<double>> jacobian_vect_; |
| |
| std::vector<double> expected_residuals_; |
| |
| std::vector<double> expected_jacobian_x_; |
| std::vector<double> expected_jacobian_y_; |
| std::vector<double> expected_jacobian_z_; |
| }; |
| |
| TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterResiduals) { |
| std::vector<double> residuals(7, -100000); |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), nullptr)); |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| } |
| |
| TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterJacobian) { |
| std::vector<double> residuals(7, -100000); |
| |
| std::vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect_[0].data()); |
| jacobian.push_back(jacobian_vect_[1].data()); |
| jacobian.push_back(jacobian_vect_[2].data()); |
| |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), jacobian.data())); |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]); |
| } |
| |
| for (int i = 0; i < 14; ++i) { |
| EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]); |
| } |
| |
| for (int i = 0; i < 21; ++i) { |
| EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]); |
| } |
| } |
| |
| TEST_F(ThreeParameterCostFunctorTest, |
| ThreeParameterJacobianWithFirstAndLastParameterBlockConstant) { |
| std::vector<double> residuals(7, -100000); |
| |
| std::vector<double*> jacobian; |
| jacobian.push_back(nullptr); |
| jacobian.push_back(jacobian_vect_[1].data()); |
| jacobian.push_back(nullptr); |
| |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), jacobian.data())); |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| |
| for (int i = 0; i < 14; ++i) { |
| EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]); |
| } |
| } |
| |
| TEST_F(ThreeParameterCostFunctorTest, |
| ThreeParameterJacobianWithSecondParameterBlockConstant) { |
| std::vector<double> residuals(7, -100000); |
| |
| std::vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect_[0].data()); |
| jacobian.push_back(nullptr); |
| jacobian.push_back(jacobian_vect_[2].data()); |
| |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), jacobian.data())); |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]); |
| } |
| |
| for (int i = 0; i < 21; ++i) { |
| EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]); |
| } |
| } |
| |
| // Takes 6 parameter blocks all of size 1: |
| // x0, y0, y1, z0, z1, z2 |
| // Same 7 residuals as MyThreeParameterCostFunctor. |
| // Naming convention for tests is (V)ariable and (C)onstant. |
| class MySixParameterCostFunctor { |
| public: |
| template <typename T> |
| bool operator()(T const* const* parameters, T* residuals) const { |
| const T* x0 = parameters[0]; |
| const T* y0 = parameters[1]; |
| const T* y1 = parameters[2]; |
| const T* z0 = parameters[3]; |
| const T* z1 = parameters[4]; |
| const T* z2 = parameters[5]; |
| |
| T sum_x = x0[0]; |
| T sum_y = y0[0] + 2.0 * y1[0]; |
| T sum_z = z0[0] + 3.0 * z1[0] + 6.0 * z2[0]; |
| |
| residuals[0] = sum_x; |
| residuals[1] = sum_y; |
| residuals[2] = sum_z; |
| residuals[3] = sum_x * sum_y; |
| residuals[4] = sum_y * sum_z; |
| residuals[5] = sum_x * sum_z; |
| residuals[6] = sum_x * sum_y * sum_z; |
| return true; |
| } |
| }; |
| |
| class SixParameterCostFunctorTest : public ::testing::Test { |
| protected: |
| void SetUp() final { |
| // Prepare the parameters. |
| x0_ = 0.0; |
| y0_ = 1.0; |
| y1_ = 3.0; |
| z0_ = 2.0; |
| z1_ = 4.0; |
| z2_ = 6.0; |
| |
| parameter_blocks_.resize(6); |
| parameter_blocks_[0] = &x0_; |
| parameter_blocks_[1] = &y0_; |
| parameter_blocks_[2] = &y1_; |
| parameter_blocks_[3] = &z0_; |
| parameter_blocks_[4] = &z1_; |
| parameter_blocks_[5] = &z2_; |
| |
| // Prepare the cost function. |
| using DynamicMySixParameterCostFunction = |
| DynamicAutoDiffCostFunction<MySixParameterCostFunctor, 3>; |
| auto cost_function = std::make_unique<DynamicMySixParameterCostFunction>( |
| new MySixParameterCostFunctor()); |
| for (int i = 0; i < 6; ++i) { |
| cost_function->AddParameterBlock(1); |
| } |
| cost_function->SetNumResiduals(7); |
| |
| cost_function_ = std::move(cost_function); |
| |
| // Setup jacobian data. |
| jacobian_vect_.resize(6); |
| for (int i = 0; i < 6; ++i) { |
| jacobian_vect_[i].resize(7, -100000); |
| } |
| |
| // Prepare the expected residuals. |
| const double sum_x = x0_; |
| const double sum_y = y0_ + 2.0 * y1_; |
| const double sum_z = z0_ + 3.0 * z1_ + 6.0 * z2_; |
| |
| expected_residuals_.resize(7); |
| expected_residuals_[0] = sum_x; |
| expected_residuals_[1] = sum_y; |
| expected_residuals_[2] = sum_z; |
| expected_residuals_[3] = sum_x * sum_y; |
| expected_residuals_[4] = sum_y * sum_z; |
| expected_residuals_[5] = sum_x * sum_z; |
| expected_residuals_[6] = sum_x * sum_y * sum_z; |
| |
| // Prepare the expected jacobian entries. |
| expected_jacobians_.resize(6); |
| expected_jacobians_[0].resize(7); |
| expected_jacobians_[0][0] = 1.0; |
| expected_jacobians_[0][1] = 0.0; |
| expected_jacobians_[0][2] = 0.0; |
| expected_jacobians_[0][3] = sum_y; |
| expected_jacobians_[0][4] = 0.0; |
| expected_jacobians_[0][5] = sum_z; |
| expected_jacobians_[0][6] = sum_y * sum_z; |
| |
| expected_jacobians_[1].resize(7); |
| expected_jacobians_[1][0] = 0.0; |
| expected_jacobians_[1][1] = 1.0; |
| expected_jacobians_[1][2] = 0.0; |
| expected_jacobians_[1][3] = sum_x; |
| expected_jacobians_[1][4] = sum_z; |
| expected_jacobians_[1][5] = 0.0; |
| expected_jacobians_[1][6] = sum_x * sum_z; |
| |
| expected_jacobians_[2].resize(7); |
| expected_jacobians_[2][0] = 0.0; |
| expected_jacobians_[2][1] = 2.0; |
| expected_jacobians_[2][2] = 0.0; |
| expected_jacobians_[2][3] = 2.0 * sum_x; |
| expected_jacobians_[2][4] = 2.0 * sum_z; |
| expected_jacobians_[2][5] = 0.0; |
| expected_jacobians_[2][6] = 2.0 * sum_x * sum_z; |
| |
| expected_jacobians_[3].resize(7); |
| expected_jacobians_[3][0] = 0.0; |
| expected_jacobians_[3][1] = 0.0; |
| expected_jacobians_[3][2] = 1.0; |
| expected_jacobians_[3][3] = 0.0; |
| expected_jacobians_[3][4] = sum_y; |
| expected_jacobians_[3][5] = sum_x; |
| expected_jacobians_[3][6] = sum_x * sum_y; |
| |
| expected_jacobians_[4].resize(7); |
| expected_jacobians_[4][0] = 0.0; |
| expected_jacobians_[4][1] = 0.0; |
| expected_jacobians_[4][2] = 3.0; |
| expected_jacobians_[4][3] = 0.0; |
| expected_jacobians_[4][4] = 3.0 * sum_y; |
| expected_jacobians_[4][5] = 3.0 * sum_x; |
| expected_jacobians_[4][6] = 3.0 * sum_x * sum_y; |
| |
| expected_jacobians_[5].resize(7); |
| expected_jacobians_[5][0] = 0.0; |
| expected_jacobians_[5][1] = 0.0; |
| expected_jacobians_[5][2] = 6.0; |
| expected_jacobians_[5][3] = 0.0; |
| expected_jacobians_[5][4] = 6.0 * sum_y; |
| expected_jacobians_[5][5] = 6.0 * sum_x; |
| expected_jacobians_[5][6] = 6.0 * sum_x * sum_y; |
| } |
| |
| protected: |
| double x0_; |
| double y0_; |
| double y1_; |
| double z0_; |
| double z1_; |
| double z2_; |
| |
| std::vector<double*> parameter_blocks_; |
| |
| std::unique_ptr<CostFunction> cost_function_; |
| |
| std::vector<std::vector<double>> jacobian_vect_; |
| |
| std::vector<double> expected_residuals_; |
| std::vector<std::vector<double>> expected_jacobians_; |
| }; |
| |
| TEST_F(SixParameterCostFunctorTest, TestSixParameterResiduals) { |
| std::vector<double> residuals(7, -100000); |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), nullptr)); |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| } |
| |
| TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobian) { |
| std::vector<double> residuals(7, -100000); |
| |
| std::vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect_[0].data()); |
| jacobian.push_back(jacobian_vect_[1].data()); |
| jacobian.push_back(jacobian_vect_[2].data()); |
| jacobian.push_back(jacobian_vect_[3].data()); |
| jacobian.push_back(jacobian_vect_[4].data()); |
| jacobian.push_back(jacobian_vect_[5].data()); |
| |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), jacobian.data())); |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| |
| for (int i = 0; i < 6; ++i) { |
| for (int j = 0; j < 7; ++j) { |
| EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); |
| } |
| } |
| } |
| |
| TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVVCVVC) { |
| std::vector<double> residuals(7, -100000); |
| |
| std::vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect_[0].data()); |
| jacobian.push_back(jacobian_vect_[1].data()); |
| jacobian.push_back(nullptr); |
| jacobian.push_back(jacobian_vect_[3].data()); |
| jacobian.push_back(jacobian_vect_[4].data()); |
| jacobian.push_back(nullptr); |
| |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), jacobian.data())); |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| |
| for (int i = 0; i < 6; ++i) { |
| // Skip the constant variables. |
| if (i == 2 || i == 5) { |
| continue; |
| } |
| |
| for (int j = 0; j < 7; ++j) { |
| EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); |
| } |
| } |
| } |
| |
| TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVCCVCV) { |
| std::vector<double> residuals(7, -100000); |
| |
| std::vector<double*> jacobian; |
| jacobian.push_back(jacobian_vect_[0].data()); |
| jacobian.push_back(nullptr); |
| jacobian.push_back(nullptr); |
| jacobian.push_back(jacobian_vect_[3].data()); |
| jacobian.push_back(nullptr); |
| jacobian.push_back(jacobian_vect_[5].data()); |
| |
| EXPECT_TRUE(cost_function_->Evaluate( |
| parameter_blocks_.data(), residuals.data(), jacobian.data())); |
| |
| for (int i = 0; i < 7; ++i) { |
| EXPECT_EQ(expected_residuals_[i], residuals[i]); |
| } |
| |
| for (int i = 0; i < 6; ++i) { |
| // Skip the constant variables. |
| if (i == 1 || i == 2 || i == 4) { |
| continue; |
| } |
| |
| for (int j = 0; j < 7; ++j) { |
| EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]); |
| } |
| } |
| } |
| |
| class ValueError { |
| public: |
| explicit ValueError(double target_value) : target_value_(target_value) {} |
| |
| template <typename T> |
| bool operator()(const T* value, T* residual) const { |
| *residual = *value - T(target_value_); |
| return true; |
| } |
| |
| protected: |
| double target_value_; |
| }; |
| |
| class DynamicValueError { |
| public: |
| explicit DynamicValueError(double target_value) |
| : target_value_(target_value) {} |
| |
| template <typename T> |
| bool operator()(T const* const* parameters, T* residual) const { |
| residual[0] = T(target_value_) - parameters[0][0]; |
| return true; |
| } |
| |
| protected: |
| double target_value_; |
| }; |
| |
| TEST(DynamicAutoDiffCostFunction, |
| EvaluateWithEmptyJacobiansArrayComputesResidual) { |
| const double target_value = 1.0; |
| double parameter = 0; |
| ceres::DynamicAutoDiffCostFunction<DynamicValueError, 1> cost_function( |
| new DynamicValueError(target_value)); |
| cost_function.AddParameterBlock(1); |
| cost_function.SetNumResiduals(1); |
| |
| double* parameter_blocks[1] = {¶meter}; |
| double* jacobians[1] = {nullptr}; |
| double residual; |
| |
| EXPECT_TRUE(cost_function.Evaluate(parameter_blocks, &residual, jacobians)); |
| EXPECT_EQ(residual, target_value); |
| } |
| |
| TEST(DynamicAutoDiffCostFunctionTest, DeductionTemplateCompilationTest) { |
| // Ensure deduction guide to be working |
| (void)DynamicAutoDiffCostFunction(new MyCostFunctor()); |
| (void)DynamicAutoDiffCostFunction(new MyCostFunctor(), TAKE_OWNERSHIP); |
| (void)DynamicAutoDiffCostFunction(std::make_unique<MyCostFunctor>()); |
| } |
| |
| TEST(DynamicAutoDiffCostFunctionTest, ArgumentForwarding) { |
| (void)DynamicAutoDiffCostFunction<MyCostFunctor>(); |
| } |
| |
| TEST(DynamicAutoDiffCostFunctionTest, UniquePtr) { |
| (void)DynamicAutoDiffCostFunction(std::make_unique<MyCostFunctor>()); |
| } |
| |
| } // namespace ceres::internal |