|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/trust_region_minimizer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstdlib> | 
|  | #include <cmath> | 
|  | #include <cstring> | 
|  | #include <limits> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/Core" | 
|  | #include "ceres/array_utils.h" | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/wall_time.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  | // Small constant for various floating point issues. | 
|  | const double kEpsilon = 1e-12; | 
|  | }  // namespace | 
|  |  | 
|  | // Compute a scaling vector that is used to improve the conditioning | 
|  | // of the Jacobian. | 
|  | void TrustRegionMinimizer::EstimateScale(const SparseMatrix& jacobian, | 
|  | double* scale) const { | 
|  | jacobian.SquaredColumnNorm(scale); | 
|  | for (int i = 0; i < jacobian.num_cols(); ++i) { | 
|  | scale[i] = 1.0 / (1.0 + sqrt(scale[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TrustRegionMinimizer::Init(const Minimizer::Options& options) { | 
|  | options_ = options; | 
|  | sort(options_.lsqp_iterations_to_dump.begin(), | 
|  | options_.lsqp_iterations_to_dump.end()); | 
|  | } | 
|  |  | 
|  | bool TrustRegionMinimizer::MaybeDumpLinearLeastSquaresProblem( | 
|  | const int iteration, | 
|  | const SparseMatrix* jacobian, | 
|  | const double* residuals, | 
|  | const double* step) const  { | 
|  | // TODO(sameeragarwal): Since the use of trust_region_radius has | 
|  | // moved inside TrustRegionStrategy, its not clear how we dump the | 
|  | // regularization vector/matrix anymore. | 
|  | // | 
|  | // Also num_eliminate_blocks is not visible to the trust region | 
|  | // minimizer either. | 
|  | // | 
|  | // Both of these indicate that this is the wrong place for this | 
|  | // code, and going forward this should needs fixing/refactoring. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void TrustRegionMinimizer::Minimize(const Minimizer::Options& options, | 
|  | double* parameters, | 
|  | Solver::Summary* summary) { | 
|  | double start_time = WallTimeInSeconds(); | 
|  | double iteration_start_time =  start_time; | 
|  | Init(options); | 
|  |  | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | summary->num_successful_steps = 0; | 
|  | summary->num_unsuccessful_steps = 0; | 
|  |  | 
|  | Evaluator* evaluator = CHECK_NOTNULL(options_.evaluator); | 
|  | SparseMatrix* jacobian = CHECK_NOTNULL(options_.jacobian); | 
|  | TrustRegionStrategy* strategy = CHECK_NOTNULL(options_.trust_region_strategy); | 
|  |  | 
|  | const int num_parameters = evaluator->NumParameters(); | 
|  | const int num_effective_parameters = evaluator->NumEffectiveParameters(); | 
|  | const int num_residuals = evaluator->NumResiduals(); | 
|  |  | 
|  | VectorRef x_min(parameters, num_parameters); | 
|  | Vector x = x_min; | 
|  | double x_norm = x.norm(); | 
|  |  | 
|  | Vector residuals(num_residuals); | 
|  | Vector trust_region_step(num_effective_parameters); | 
|  | Vector delta(num_effective_parameters); | 
|  | Vector x_plus_delta(num_parameters); | 
|  | Vector gradient(num_effective_parameters); | 
|  | Vector model_residuals(num_residuals); | 
|  | Vector scale(num_effective_parameters); | 
|  |  | 
|  | IterationSummary iteration_summary; | 
|  | iteration_summary.iteration = 0; | 
|  | iteration_summary.step_is_valid = false; | 
|  | iteration_summary.step_is_successful = false; | 
|  | iteration_summary.cost_change = 0.0; | 
|  | iteration_summary.gradient_max_norm = 0.0; | 
|  | iteration_summary.step_norm = 0.0; | 
|  | iteration_summary.relative_decrease = 0.0; | 
|  | iteration_summary.trust_region_radius = strategy->Radius(); | 
|  | // TODO(sameeragarwal): Rename eta to linear_solver_accuracy or | 
|  | // something similar across the board. | 
|  | iteration_summary.eta = options_.eta; | 
|  | iteration_summary.linear_solver_iterations = 0; | 
|  | iteration_summary.step_solver_time_in_seconds = 0; | 
|  |  | 
|  | // Do initial cost and Jacobian evaluation. | 
|  | double cost = 0.0; | 
|  | if (!evaluator->Evaluate(x.data(), &cost, residuals.data(), NULL, jacobian)) { | 
|  | LOG(WARNING) << "Terminating: Residual and Jacobian evaluation failed."; | 
|  | summary->termination_type = NUMERICAL_FAILURE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.cost = cost + summary->fixed_cost; | 
|  |  | 
|  | int num_consecutive_nonmonotonic_steps = 0; | 
|  | double minimum_cost = cost; | 
|  | double reference_cost = cost; | 
|  | double accumulated_reference_model_cost_change = 0.0; | 
|  | double candidate_cost = cost; | 
|  | double accumulated_candidate_model_cost_change = 0.0; | 
|  |  | 
|  | gradient.setZero(); | 
|  | jacobian->LeftMultiply(residuals.data(), gradient.data()); | 
|  | iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); | 
|  |  | 
|  | if (options_.jacobi_scaling) { | 
|  | EstimateScale(*jacobian, scale.data()); | 
|  | jacobian->ScaleColumns(scale.data()); | 
|  | } else { | 
|  | scale.setOnes(); | 
|  | } | 
|  |  | 
|  | // The initial gradient max_norm is bounded from below so that we do | 
|  | // not divide by zero. | 
|  | const double initial_gradient_max_norm = | 
|  | max(iteration_summary.gradient_max_norm, kEpsilon); | 
|  | const double absolute_gradient_tolerance = | 
|  | options_.gradient_tolerance * initial_gradient_max_norm; | 
|  |  | 
|  | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { | 
|  | summary->termination_type = GRADIENT_TOLERANCE; | 
|  | VLOG(1) << "Terminating: Gradient tolerance reached." | 
|  | << "Relative gradient max norm: " | 
|  | << iteration_summary.gradient_max_norm / initial_gradient_max_norm | 
|  | << " <= " << options_.gradient_tolerance; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  | summary->iterations.push_back(iteration_summary); | 
|  |  | 
|  | int num_consecutive_invalid_steps = 0; | 
|  | while (true) { | 
|  | if (!RunCallbacks(options.callbacks, iteration_summary, summary)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_start_time = WallTimeInSeconds(); | 
|  | if (iteration_summary.iteration >= options_.max_num_iterations) { | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG(1) << "Terminating: Maximum number of iterations reached."; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const double total_solver_time = iteration_start_time - start_time + | 
|  | summary->preprocessor_time_in_seconds; | 
|  | if (total_solver_time >= options_.max_solver_time_in_seconds) { | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG(1) << "Terminating: Maximum solver time reached."; | 
|  | break; | 
|  | } | 
|  |  | 
|  | iteration_summary = IterationSummary(); | 
|  | iteration_summary = summary->iterations.back(); | 
|  | iteration_summary.iteration = summary->iterations.back().iteration + 1; | 
|  | iteration_summary.step_is_valid = false; | 
|  | iteration_summary.step_is_successful = false; | 
|  |  | 
|  | const double strategy_start_time = WallTimeInSeconds(); | 
|  | TrustRegionStrategy::PerSolveOptions per_solve_options; | 
|  | per_solve_options.eta = options_.eta; | 
|  | TrustRegionStrategy::Summary strategy_summary = | 
|  | strategy->ComputeStep(per_solve_options, | 
|  | jacobian, | 
|  | residuals.data(), | 
|  | trust_region_step.data()); | 
|  |  | 
|  | iteration_summary.step_solver_time_in_seconds = | 
|  | WallTimeInSeconds() - strategy_start_time; | 
|  | iteration_summary.linear_solver_iterations = | 
|  | strategy_summary.num_iterations; | 
|  |  | 
|  | if (!MaybeDumpLinearLeastSquaresProblem(iteration_summary.iteration, | 
|  | jacobian, | 
|  | residuals.data(), | 
|  | trust_region_step.data())) { | 
|  | LOG(FATAL) << "Tried writing linear least squares problem: " | 
|  | << options.lsqp_dump_directory << "but failed."; | 
|  | } | 
|  |  | 
|  | double model_cost_change = 0.0; | 
|  | if (strategy_summary.termination_type != FAILURE) { | 
|  | // new_model_cost | 
|  | //  = 1/2 [f + J * step]^2 | 
|  | //  = 1/2 [ f'f + 2f'J * step + step' * J' * J * step ] | 
|  | // model_cost_change | 
|  | //  = cost - new_model_cost | 
|  | //  = f'f/2  - 1/2 [ f'f + 2f'J * step + step' * J' * J * step] | 
|  | //  = -f'J * step - step' * J' * J * step / 2 | 
|  | model_residuals.setZero(); | 
|  | jacobian->RightMultiply(trust_region_step.data(), model_residuals.data()); | 
|  | model_cost_change = -(residuals.dot(model_residuals) + | 
|  | model_residuals.squaredNorm() / 2.0); | 
|  |  | 
|  | if (model_cost_change < 0.0) { | 
|  | VLOG(1) << "Invalid step: current_cost: " << cost | 
|  | << " absolute difference " << model_cost_change | 
|  | << " relative difference " << (model_cost_change / cost); | 
|  | } else { | 
|  | iteration_summary.step_is_valid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!iteration_summary.step_is_valid) { | 
|  | // Invalid steps can happen due to a number of reasons, and we | 
|  | // allow a limited number of successive failures, and return with | 
|  | // NUMERICAL_FAILURE if this limit is exceeded. | 
|  | if (++num_consecutive_invalid_steps >= | 
|  | options_.max_num_consecutive_invalid_steps) { | 
|  | summary->termination_type = NUMERICAL_FAILURE; | 
|  | summary->error = StringPrintf( | 
|  | "Terminating. Number of successive invalid steps more " | 
|  | "than Solver::Options::max_num_consecutive_invalid_steps: %d", | 
|  | options_.max_num_consecutive_invalid_steps); | 
|  |  | 
|  | LOG(WARNING) << summary->error; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We are going to try and reduce the trust region radius and | 
|  | // solve again. To do this, we are going to treat this iteration | 
|  | // as an unsuccessful iteration. Since the various callbacks are | 
|  | // still executed, we are going to fill the iteration summary | 
|  | // with data that assumes a step of length zero and no progress. | 
|  | iteration_summary.cost = cost + summary->fixed_cost; | 
|  | iteration_summary.cost_change = 0.0; | 
|  | iteration_summary.gradient_max_norm = | 
|  | summary->iterations.back().gradient_max_norm; | 
|  | iteration_summary.step_norm = 0.0; | 
|  | iteration_summary.relative_decrease = 0.0; | 
|  | iteration_summary.eta = options_.eta; | 
|  | } else { | 
|  | // The step is numerically valid, so now we can judge its quality. | 
|  | num_consecutive_invalid_steps = 0; | 
|  |  | 
|  | // Undo the Jacobian column scaling. | 
|  | delta = (trust_region_step.array() * scale.array()).matrix(); | 
|  | if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { | 
|  | summary->termination_type = NUMERICAL_FAILURE; | 
|  | summary->error = | 
|  | "Terminating. Failed to compute Plus(x, delta, x_plus_delta)."; | 
|  |  | 
|  | LOG(WARNING) << summary->error; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Try this step. | 
|  | double new_cost = numeric_limits<double>::max(); | 
|  | if (!evaluator->Evaluate(x_plus_delta.data(), | 
|  | &new_cost, | 
|  | NULL, NULL, NULL)) { | 
|  | // If the evaluation of the new cost fails, treat it as a step | 
|  | // with high cost. | 
|  | LOG(WARNING) << "Step failed to evaluate. " | 
|  | << "Treating it as step with infinite cost"; | 
|  | new_cost = numeric_limits<double>::max(); | 
|  | } else { | 
|  | // Check if performing an inner iteration will make it better. | 
|  | if (options.inner_iteration_minimizer != NULL) { | 
|  | const double x_plus_delta_cost = new_cost; | 
|  | Vector inner_iteration_x = x_plus_delta; | 
|  | Solver::Summary inner_iteration_summary; | 
|  | options.inner_iteration_minimizer->Minimize(options, | 
|  | inner_iteration_x.data(), | 
|  | &inner_iteration_summary); | 
|  | if(!evaluator->Evaluate(inner_iteration_x.data(), | 
|  | &new_cost, | 
|  | NULL, NULL, NULL)) { | 
|  | VLOG(2) << "Inner iteration failed."; | 
|  | new_cost = x_plus_delta_cost; | 
|  | } else { | 
|  | x_plus_delta = inner_iteration_x; | 
|  | // Boost the model_cost_change, since the inner iteration | 
|  | // improvements are not accounted for by the trust region. | 
|  | model_cost_change +=  x_plus_delta_cost - new_cost; | 
|  | VLOG(2) << "Inner iteration succeeded; current cost: " << cost | 
|  | << " x_plus_delta_cost: " << x_plus_delta_cost | 
|  | << " new_cost: " << new_cost; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | iteration_summary.step_norm = (x - x_plus_delta).norm(); | 
|  |  | 
|  | // Convergence based on parameter_tolerance. | 
|  | const double step_size_tolerance =  options_.parameter_tolerance * | 
|  | (x_norm + options_.parameter_tolerance); | 
|  | if (iteration_summary.step_norm <= step_size_tolerance) { | 
|  | VLOG(1) << "Terminating. Parameter tolerance reached. " | 
|  | << "relative step_norm: " | 
|  | << iteration_summary.step_norm / | 
|  | (x_norm + options_.parameter_tolerance) | 
|  | << " <= " << options_.parameter_tolerance; | 
|  | summary->termination_type = PARAMETER_TOLERANCE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | VLOG(2) << "old cost: " << cost << " new cost: " << new_cost; | 
|  | iteration_summary.cost_change =  cost - new_cost; | 
|  | const double absolute_function_tolerance = | 
|  | options_.function_tolerance * cost; | 
|  | if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { | 
|  | VLOG(1) << "Terminating. Function tolerance reached. " | 
|  | << "|cost_change|/cost: " | 
|  | << fabs(iteration_summary.cost_change) / cost | 
|  | << " <= " << options_.function_tolerance; | 
|  | summary->termination_type = FUNCTION_TOLERANCE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double relative_decrease = | 
|  | iteration_summary.cost_change / model_cost_change; | 
|  |  | 
|  | const double historical_relative_decrease = | 
|  | (reference_cost - new_cost) / | 
|  | (accumulated_reference_model_cost_change + model_cost_change); | 
|  |  | 
|  | // If monotonic steps are being used, then the relative_decrease | 
|  | // is the usual ratio of the change in objective function value | 
|  | // divided by the change in model cost. | 
|  | // | 
|  | // If non-monotonic steps are allowed, then we take the maximum | 
|  | // of the relative_decrease and the | 
|  | // historical_relative_decrease, which measures the increase | 
|  | // from a reference iteration. The model cost change is | 
|  | // estimated by accumulating the model cost changes since the | 
|  | // reference iteration. The historical relative_decrease offers | 
|  | // a boost to a step which is not too bad compared to the | 
|  | // reference iteration, allowing for non-monotonic steps. | 
|  | iteration_summary.relative_decrease = | 
|  | options.use_nonmonotonic_steps | 
|  | ? max(relative_decrease, historical_relative_decrease) | 
|  | : relative_decrease; | 
|  |  | 
|  | iteration_summary.step_is_successful = | 
|  | iteration_summary.relative_decrease > options_.min_relative_decrease; | 
|  |  | 
|  | if (iteration_summary.step_is_successful) { | 
|  | accumulated_candidate_model_cost_change += model_cost_change; | 
|  | accumulated_reference_model_cost_change += model_cost_change; | 
|  | if (relative_decrease <= options_.min_relative_decrease) { | 
|  | iteration_summary.step_is_nonmonotonic = true; | 
|  | VLOG(2) << "Non-monotonic step! " | 
|  | << " relative_decrease: " << relative_decrease | 
|  | << " historical_relative_decrease: " | 
|  | << historical_relative_decrease; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (iteration_summary.step_is_successful) { | 
|  | ++summary->num_successful_steps; | 
|  | strategy->StepAccepted(iteration_summary.relative_decrease); | 
|  | x = x_plus_delta; | 
|  | x_norm = x.norm(); | 
|  |  | 
|  | // Step looks good, evaluate the residuals and Jacobian at this | 
|  | // point. | 
|  | if (!evaluator->Evaluate(x.data(), | 
|  | &cost, | 
|  | residuals.data(), | 
|  | NULL, | 
|  | jacobian)) { | 
|  | summary->termination_type = NUMERICAL_FAILURE; | 
|  | summary->error = "Terminating: Residual and Jacobian evaluation failed."; | 
|  | LOG(WARNING) << summary->error; | 
|  | return; | 
|  | } | 
|  |  | 
|  | gradient.setZero(); | 
|  | jacobian->LeftMultiply(residuals.data(), gradient.data()); | 
|  | iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); | 
|  |  | 
|  | if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { | 
|  | summary->termination_type = GRADIENT_TOLERANCE; | 
|  | VLOG(1) << "Terminating: Gradient tolerance reached." | 
|  | << "Relative gradient max norm: " | 
|  | << iteration_summary.gradient_max_norm / initial_gradient_max_norm | 
|  | << " <= " << options_.gradient_tolerance; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (options_.jacobi_scaling) { | 
|  | jacobian->ScaleColumns(scale.data()); | 
|  | } | 
|  |  | 
|  | // Update the best, reference and candidate iterates. | 
|  | // | 
|  | // Based on algorithm 10.1.2 (page 357) of "Trust Region | 
|  | // Methods" by Conn Gould & Toint, or equations 33-40 of | 
|  | // "Non-monotone trust-region algorithms for nonlinear | 
|  | // optimization subject to convex constraints" by Phil Toint, | 
|  | // Mathematical Programming, 77, 1997. | 
|  | if (cost < minimum_cost) { | 
|  | // A step that improves solution quality was found. | 
|  | x_min = x; | 
|  | minimum_cost = cost; | 
|  | // Set the candidate iterate to the current point. | 
|  | candidate_cost = cost; | 
|  | num_consecutive_nonmonotonic_steps = 0; | 
|  | accumulated_candidate_model_cost_change = 0.0; | 
|  | } else { | 
|  | ++num_consecutive_nonmonotonic_steps; | 
|  | if (cost > candidate_cost) { | 
|  | // The current iterate is has a higher cost than the | 
|  | // candidate iterate. Set the candidate to this point. | 
|  | VLOG(2) << "Updating the candidate iterate to the current point."; | 
|  | candidate_cost = cost; | 
|  | accumulated_candidate_model_cost_change = 0.0; | 
|  | } | 
|  |  | 
|  | // At this point we have made too many non-monotonic steps and | 
|  | // we are going to reset the value of the reference iterate so | 
|  | // as to force the algorithm to descend. | 
|  | // | 
|  | // This is the case because the candidate iterate has a value | 
|  | // greater than minimum_cost but smaller than the reference | 
|  | // iterate. | 
|  | if (num_consecutive_nonmonotonic_steps == | 
|  | options.max_consecutive_nonmonotonic_steps) { | 
|  | VLOG(2) << "Resetting the reference point to the candidate point"; | 
|  | reference_cost = candidate_cost; | 
|  | accumulated_reference_model_cost_change = | 
|  | accumulated_candidate_model_cost_change; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ++summary->num_unsuccessful_steps; | 
|  | if (iteration_summary.step_is_valid) { | 
|  | strategy->StepRejected(iteration_summary.relative_decrease); | 
|  | } else { | 
|  | strategy->StepIsInvalid(); | 
|  | } | 
|  | } | 
|  |  | 
|  | iteration_summary.cost = cost + summary->fixed_cost; | 
|  | iteration_summary.trust_region_radius = strategy->Radius(); | 
|  | if (iteration_summary.trust_region_radius < | 
|  | options_.min_trust_region_radius) { | 
|  | summary->termination_type = PARAMETER_TOLERANCE; | 
|  | VLOG(1) << "Termination. Minimum trust region radius reached."; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  | summary->iterations.push_back(iteration_summary); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |