| .. highlight:: c++ |
| |
| .. default-domain:: cpp |
| |
| .. _chapter-gradient_tutorial: |
| |
| ================================== |
| General Unconstrained Minimization |
| ================================== |
| |
| Ceres Solver besides being able to solve non-linear least squares |
| problem can also solve general unconstrained problems using just their |
| objective function value and gradients. In this chapter we will see |
| how to do this. |
| |
| Rosenbrock's Function |
| ===================== |
| |
| Consider minimizing the famous `Rosenbrock's function |
| <http://en.wikipedia.org/wiki/Rosenbrock_function>`_ [#f1]_. |
| |
| The simplest way to minimize is to define a templated functor to |
| evaluate the objective value of this function and then use Ceres |
| Solver's automatic differentiation to compute its derivatives. |
| |
| We begin by defining a templated functor and then using |
| ``AutoDiffFirstOrderFunction`` to construct an instance of the |
| ``FirstOrderFunction`` interface. This is the object that is |
| responsible for computing the objective function value and the |
| gradient (if required). This is the analog of the |
| :class:`CostFunction` when defining non-linear least squares problems |
| in Ceres. |
| |
| .. code:: |
| |
| // f(x,y) = (1-x)^2 + 100(y - x^2)^2; |
| struct Rosenbrock { |
| template <typename T> |
| bool operator()(const T* parameters, T* cost) const { |
| const T x = parameters[0]; |
| const T y = parameters[1]; |
| cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); |
| return true; |
| } |
| |
| static ceres::FirstOrderFunction* Create() { |
| constexpr int kNumParameters = 2; |
| return new ceres::AutoDiffFirstOrderFunction<Rosenbrock, kNumParameters>( |
| new Rosenbrock); |
| } |
| }; |
| |
| |
| Minimizing it then is a straightforward matter of constructing a |
| :class:`GradientProblem` object and calling :func:`Solve` on it. |
| |
| .. code:: |
| |
| double parameters[2] = {-1.2, 1.0}; |
| |
| ceres::GradientProblem problem(Rosenbrock::Create()); |
| |
| ceres::GradientProblemSolver::Options options; |
| options.minimizer_progress_to_stdout = true; |
| ceres::GradientProblemSolver::Summary summary; |
| ceres::Solve(options, problem, parameters, &summary); |
| |
| std::cout << summary.FullReport() << "\n"; |
| |
| Executing this code results, solve the problem using limited memory |
| `BFGS |
| <http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm>`_ |
| algorithm. |
| |
| .. code-block:: bash |
| |
| 0: f: 2.420000e+01 d: 0.00e+00 g: 2.16e+02 h: 0.00e+00 s: 0.00e+00 e: 0 it: 2.29e-05 tt: 2.29e-05 |
| 1: f: 4.280493e+00 d: 1.99e+01 g: 1.52e+01 h: 2.01e-01 s: 8.62e-04 e: 2 it: 8.39e-05 tt: 1.62e-04 |
| 2: f: 3.571154e+00 d: 7.09e-01 g: 1.35e+01 h: 3.78e-01 s: 1.34e-01 e: 3 it: 2.22e-05 tt: 1.91e-04 |
| 3: f: 3.440869e+00 d: 1.30e-01 g: 1.73e+01 h: 1.36e-01 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 2.01e-04 |
| 4: f: 3.213597e+00 d: 2.27e-01 g: 1.55e+01 h: 1.06e-01 s: 4.59e-01 e: 1 it: 3.81e-06 tt: 2.10e-04 |
| 5: f: 2.839723e+00 d: 3.74e-01 g: 1.05e+01 h: 1.34e-01 s: 5.24e-01 e: 1 it: 4.05e-06 tt: 2.19e-04 |
| 6: f: 2.448490e+00 d: 3.91e-01 g: 1.29e+01 h: 3.04e-01 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 2.28e-04 |
| 7: f: 1.943019e+00 d: 5.05e-01 g: 4.00e+00 h: 8.81e-02 s: 7.43e-01 e: 1 it: 4.05e-06 tt: 2.36e-04 |
| 8: f: 1.731469e+00 d: 2.12e-01 g: 7.36e+00 h: 1.71e-01 s: 4.60e-01 e: 2 it: 1.22e-05 tt: 2.52e-04 |
| 9: f: 1.503267e+00 d: 2.28e-01 g: 6.47e+00 h: 8.66e-02 s: 1.00e+00 e: 1 it: 5.96e-06 tt: 2.66e-04 |
| 10: f: 1.228331e+00 d: 2.75e-01 g: 2.00e+00 h: 7.70e-02 s: 7.90e-01 e: 1 it: 4.05e-06 tt: 2.75e-04 |
| 11: f: 1.016523e+00 d: 2.12e-01 g: 5.15e+00 h: 1.39e-01 s: 3.76e-01 e: 2 it: 9.06e-06 tt: 2.88e-04 |
| 12: f: 9.145773e-01 d: 1.02e-01 g: 6.74e+00 h: 7.98e-02 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 2.97e-04 |
| 13: f: 7.508302e-01 d: 1.64e-01 g: 3.88e+00 h: 5.76e-02 s: 4.93e-01 e: 1 it: 5.01e-06 tt: 3.05e-04 |
| 14: f: 5.832378e-01 d: 1.68e-01 g: 5.56e+00 h: 1.42e-01 s: 1.00e+00 e: 1 it: 4.77e-06 tt: 3.13e-04 |
| 15: f: 3.969581e-01 d: 1.86e-01 g: 1.64e+00 h: 1.17e-01 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 3.20e-04 |
| 16: f: 3.171557e-01 d: 7.98e-02 g: 3.84e+00 h: 1.18e-01 s: 3.97e-01 e: 2 it: 8.82e-06 tt: 3.33e-04 |
| 17: f: 2.641257e-01 d: 5.30e-02 g: 3.27e+00 h: 6.14e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 3.42e-04 |
| 18: f: 1.909730e-01 d: 7.32e-02 g: 5.29e-01 h: 8.55e-02 s: 6.82e-01 e: 1 it: 1.00e-05 tt: 4.64e-04 |
| 19: f: 1.472012e-01 d: 4.38e-02 g: 3.11e+00 h: 1.20e-01 s: 3.47e-01 e: 2 it: 1.29e-05 tt: 4.87e-04 |
| 20: f: 1.093558e-01 d: 3.78e-02 g: 2.97e+00 h: 8.43e-02 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 4.97e-04 |
| 21: f: 6.710346e-02 d: 4.23e-02 g: 1.42e+00 h: 9.64e-02 s: 8.85e-01 e: 1 it: 4.05e-06 tt: 5.06e-04 |
| 22: f: 3.993377e-02 d: 2.72e-02 g: 2.30e+00 h: 1.29e-01 s: 4.63e-01 e: 2 it: 1.00e-05 tt: 5.25e-04 |
| 23: f: 2.911794e-02 d: 1.08e-02 g: 2.55e+00 h: 6.55e-02 s: 1.00e+00 e: 1 it: 5.01e-06 tt: 5.34e-04 |
| 24: f: 1.457683e-02 d: 1.45e-02 g: 2.77e-01 h: 6.37e-02 s: 6.14e-01 e: 1 it: 4.05e-06 tt: 5.42e-04 |
| 25: f: 8.577515e-03 d: 6.00e-03 g: 2.86e+00 h: 1.40e-01 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 5.49e-04 |
| 26: f: 3.486574e-03 d: 5.09e-03 g: 1.76e-01 h: 1.23e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 5.57e-04 |
| 27: f: 1.257570e-03 d: 2.23e-03 g: 1.39e-01 h: 5.08e-02 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 5.65e-04 |
| 28: f: 2.783568e-04 d: 9.79e-04 g: 6.20e-01 h: 6.47e-02 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 5.73e-04 |
| 29: f: 2.533399e-05 d: 2.53e-04 g: 1.68e-02 h: 1.98e-03 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 5.81e-04 |
| 30: f: 7.591572e-07 d: 2.46e-05 g: 5.40e-03 h: 9.27e-03 s: 1.00e+00 e: 1 it: 5.96e-06 tt: 6.30e-04 |
| 31: f: 1.902460e-09 d: 7.57e-07 g: 1.62e-03 h: 1.89e-03 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 6.39e-04 |
| 32: f: 1.003030e-12 d: 1.90e-09 g: 3.50e-05 h: 3.52e-05 s: 1.00e+00 e: 1 it: 3.81e-06 tt: 6.47e-04 |
| 33: f: 4.835994e-17 d: 1.00e-12 g: 1.05e-07 h: 1.13e-06 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 6.59e-04 |
| 34: f: 1.885250e-22 d: 4.84e-17 g: 2.69e-10 h: 1.45e-08 s: 1.00e+00 e: 1 it: 4.05e-06 tt: 6.67e-04 |
| |
| Solver Summary (v 2.1.0-eigen-(3.4.0)-lapack-suitesparse-(5.10.1)-cxsparse-(3.2.0)-acceleratesparse-eigensparse-no_openmp) |
| |
| Parameters 2 |
| Line search direction LBFGS (20) |
| Line search type CUBIC WOLFE |
| |
| |
| Cost: |
| Initial 2.420000e+01 |
| Final 1.955192e-27 |
| Change 2.420000e+01 |
| |
| Minimizer iterations 36 |
| |
| Time (in seconds): |
| |
| Cost evaluation 0.000000 (0) |
| Gradient & cost evaluation 0.000005 (44) |
| Polynomial minimization 0.000041 |
| Total 0.000368 |
| |
| Termination: CONVERGENCE (Parameter tolerance reached. Relative step_norm: 1.890726e-11 <= 1.000000e-08.) |
| |
| Initial x: -1.2 y: 1 |
| Final x: 1 y: 1 |
| |
| |
| |
| If you are unable to use automatic differentiation for some reason |
| (say because you need to call an external library), then you can |
| use numeric differentiation. In that case the functor is defined as |
| follows [#f2]_. |
| |
| .. code:: |
| |
| // f(x,y) = (1-x)^2 + 100(y - x^2)^2; |
| struct Rosenbrock { |
| bool operator()(const double* parameters, double* cost) const { |
| const double x = parameters[0]; |
| const double y = parameters[1]; |
| cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); |
| return true; |
| } |
| |
| static ceres::FirstOrderFunction* Create() { |
| constexpr int kNumParameters = 2; |
| return new ceres::NumericDiffFirstOrderFunction<Rosenbrock, |
| ceres::CENTRAL, |
| kNumParameters>( |
| new Rosenbrock); |
| } |
| }; |
| |
| And finally, if you would rather compute the derivatives by hand (say |
| because the size of the parameter vector is too large to be |
| automatically differentiated). Then you should define an instance of |
| `FirstOrderFunction`, which is the analog of :class:`CostFunction` for |
| non-linear least squares problems [#f3]_. |
| |
| .. code:: |
| |
| // f(x,y) = (1-x)^2 + 100(y - x^2)^2; |
| class Rosenbrock final : public ceres::FirstOrderFunction { |
| public: |
| ~Rosenbrock() override {} |
| |
| bool Evaluate(const double* parameters, |
| double* cost, |
| double* gradient) const override { |
| const double x = parameters[0]; |
| const double y = parameters[1]; |
| |
| cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); |
| if (gradient) { |
| gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; |
| gradient[1] = 200.0 * (y - x * x); |
| } |
| return true; |
| } |
| |
| int NumParameters() const override { return 2; } |
| }; |
| |
| .. rubric:: Footnotes |
| |
| .. [#f1] `examples/rosenbrock.cc |
| <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock.cc>`_ |
| |
| .. [#f2] `examples/rosenbrock_numeric_diff.cc |
| <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_numeric_diff.cc>`_ |
| |
| .. [#f3] `examples/rosenbrock_analytic_diff.cc |
| <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_analytic_diff.cc>`_ |