| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/block_jacobi_preconditioner.h" | 
 |  | 
 | #include <memory> | 
 | #include <random> | 
 | #include <vector> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/block_random_access_diagonal_matrix.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | TEST(BlockSparseJacobiPreconditioner, _) { | 
 |   constexpr int kNumtrials = 10; | 
 |   BlockSparseMatrix::RandomMatrixOptions options; | 
 |   options.num_col_blocks = 3; | 
 |   options.min_col_block_size = 1; | 
 |   options.max_col_block_size = 3; | 
 |  | 
 |   options.num_row_blocks = 5; | 
 |   options.min_row_block_size = 1; | 
 |   options.max_row_block_size = 4; | 
 |   options.block_density = 0.25; | 
 |   std::mt19937 prng; | 
 |  | 
 |   for (int trial = 0; trial < kNumtrials; ++trial) { | 
 |     auto jacobian = BlockSparseMatrix::CreateRandomMatrix(options, prng); | 
 |     Vector diagonal = Vector::Ones(jacobian->num_cols()); | 
 |     Matrix dense_jacobian; | 
 |     jacobian->ToDenseMatrix(&dense_jacobian); | 
 |     Matrix hessian = dense_jacobian.transpose() * dense_jacobian; | 
 |     hessian.diagonal() += diagonal.array().square().matrix(); | 
 |  | 
 |     BlockSparseJacobiPreconditioner pre(*jacobian); | 
 |     pre.Update(*jacobian, diagonal.data()); | 
 |  | 
 |     // The const_cast is needed to be able to call GetCell. | 
 |     auto* m = const_cast<BlockRandomAccessDiagonalMatrix*>(&pre.matrix()); | 
 |     EXPECT_EQ(m->num_rows(), jacobian->num_cols()); | 
 |     EXPECT_EQ(m->num_cols(), jacobian->num_cols()); | 
 |  | 
 |     const CompressedRowBlockStructure* bs = jacobian->block_structure(); | 
 |     for (int i = 0; i < bs->cols.size(); ++i) { | 
 |       const int block_size = bs->cols[i].size; | 
 |       int r, c, row_stride, col_stride; | 
 |       CellInfo* cell_info = m->GetCell(i, i, &r, &c, &row_stride, &col_stride); | 
 |       Matrix actual_block_inverse = | 
 |           MatrixRef(cell_info->values, row_stride, col_stride) | 
 |               .block(r, c, block_size, block_size); | 
 |       Matrix expected_block = hessian.block( | 
 |           bs->cols[i].position, bs->cols[i].position, block_size, block_size); | 
 |       const double residual = (actual_block_inverse * expected_block - | 
 |                                Matrix::Identity(block_size, block_size)) | 
 |                                   .norm(); | 
 |       EXPECT_NEAR(residual, 0.0, 1e-12) << "Block: " << i; | 
 |     } | 
 |     options.num_col_blocks++; | 
 |     options.num_row_blocks++; | 
 |   } | 
 | } | 
 |  | 
 | TEST(CompressedRowSparseJacobiPreconditioner, _) { | 
 |   constexpr int kNumtrials = 10; | 
 |   CompressedRowSparseMatrix::RandomMatrixOptions options; | 
 |   options.num_col_blocks = 3; | 
 |   options.min_col_block_size = 1; | 
 |   options.max_col_block_size = 3; | 
 |  | 
 |   options.num_row_blocks = 5; | 
 |   options.min_row_block_size = 1; | 
 |   options.max_row_block_size = 4; | 
 |   options.block_density = 0.25; | 
 |   std::mt19937 prng; | 
 |  | 
 |   for (int trial = 0; trial < kNumtrials; ++trial) { | 
 |     auto jacobian = | 
 |         CompressedRowSparseMatrix::CreateRandomMatrix(options, prng); | 
 |     Vector diagonal = Vector::Ones(jacobian->num_cols()); | 
 |  | 
 |     Matrix dense_jacobian; | 
 |     jacobian->ToDenseMatrix(&dense_jacobian); | 
 |     Matrix hessian = dense_jacobian.transpose() * dense_jacobian; | 
 |     hessian.diagonal() += diagonal.array().square().matrix(); | 
 |  | 
 |     BlockCRSJacobiPreconditioner pre(*jacobian); | 
 |     pre.Update(*jacobian, diagonal.data()); | 
 |     auto& m = pre.matrix(); | 
 |  | 
 |     EXPECT_EQ(m.num_rows(), jacobian->num_cols()); | 
 |     EXPECT_EQ(m.num_cols(), jacobian->num_cols()); | 
 |  | 
 |     const auto& col_blocks = jacobian->col_blocks(); | 
 |     for (int i = 0, col = 0; i < col_blocks.size(); ++i) { | 
 |       const int block_size = col_blocks[i].size; | 
 |       int idx = m.rows()[col]; | 
 |       for (int j = 0; j < block_size; ++j) { | 
 |         EXPECT_EQ(m.rows()[col + j + 1] - m.rows()[col + j], block_size); | 
 |         for (int k = 0; k < block_size; ++k, ++idx) { | 
 |           EXPECT_EQ(m.cols()[idx], col + k); | 
 |         } | 
 |       } | 
 |  | 
 |       ConstMatrixRef actual_block_inverse( | 
 |           m.values() + m.rows()[col], block_size, block_size); | 
 |       Matrix expected_block = hessian.block(col, col, block_size, block_size); | 
 |       const double residual = (actual_block_inverse * expected_block - | 
 |                                Matrix::Identity(block_size, block_size)) | 
 |                                   .norm(); | 
 |       EXPECT_NEAR(residual, 0.0, 1e-12) << "Block: " << i; | 
 |       col += block_size; | 
 |     } | 
 |     options.num_col_blocks++; | 
 |     options.num_row_blocks++; | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |