|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  | #include <random> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/SparseCore" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/crs_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | static void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { | 
|  | EXPECT_EQ(a->num_rows(), b->num_rows()); | 
|  | EXPECT_EQ(a->num_cols(), b->num_cols()); | 
|  |  | 
|  | int num_rows = a->num_rows(); | 
|  | int num_cols = a->num_cols(); | 
|  |  | 
|  | for (int i = 0; i < num_cols; ++i) { | 
|  | Vector x = Vector::Zero(num_cols); | 
|  | x(i) = 1.0; | 
|  |  | 
|  | Vector y_a = Vector::Zero(num_rows); | 
|  | Vector y_b = Vector::Zero(num_rows); | 
|  |  | 
|  | a->RightMultiplyAndAccumulate(x.data(), y_a.data()); | 
|  | b->RightMultiplyAndAccumulate(x.data(), y_b.data()); | 
|  | EXPECT_EQ((y_a - y_b).norm(), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | class CompressedRowSparseMatrixTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | auto problem = CreateLinearLeastSquaresProblemFromId(1); | 
|  |  | 
|  | CHECK(problem != nullptr); | 
|  |  | 
|  | tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
|  | crsm = CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm); | 
|  |  | 
|  | num_rows = tsm->num_rows(); | 
|  | num_cols = tsm->num_cols(); | 
|  |  | 
|  | std::vector<Block>* row_blocks = crsm->mutable_row_blocks(); | 
|  | row_blocks->resize(num_rows); | 
|  | for (int i = 0; i < row_blocks->size(); ++i) { | 
|  | (*row_blocks)[i] = Block(1, i); | 
|  | } | 
|  | std::vector<Block>* col_blocks = crsm->mutable_col_blocks(); | 
|  | col_blocks->resize(num_cols); | 
|  | for (int i = 0; i < col_blocks->size(); ++i) { | 
|  | (*col_blocks)[i] = Block(1, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | int num_rows; | 
|  | int num_cols; | 
|  |  | 
|  | std::unique_ptr<TripletSparseMatrix> tsm; | 
|  | std::unique_ptr<CompressedRowSparseMatrix> crsm; | 
|  | }; | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, Scale) { | 
|  | Vector scale(num_cols); | 
|  | for (int i = 0; i < num_cols; ++i) { | 
|  | scale(i) = i + 1; | 
|  | } | 
|  |  | 
|  | tsm->ScaleColumns(scale.data()); | 
|  | crsm->ScaleColumns(scale.data()); | 
|  | CompareMatrices(tsm.get(), crsm.get()); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, DeleteRows) { | 
|  | // Clear the row and column blocks as these are purely scalar tests. | 
|  | crsm->mutable_row_blocks()->clear(); | 
|  | crsm->mutable_col_blocks()->clear(); | 
|  |  | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | tsm->Resize(num_rows - i, num_cols); | 
|  | crsm->DeleteRows(crsm->num_rows() - tsm->num_rows()); | 
|  | CompareMatrices(tsm.get(), crsm.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, AppendRows) { | 
|  | // Clear the row and column blocks as these are purely scalar tests. | 
|  | crsm->mutable_row_blocks()->clear(); | 
|  | crsm->mutable_col_blocks()->clear(); | 
|  |  | 
|  | for (int i = 0; i < num_rows; ++i) { | 
|  | TripletSparseMatrix tsm_appendage(*tsm); | 
|  | tsm_appendage.Resize(i, num_cols); | 
|  |  | 
|  | tsm->AppendRows(tsm_appendage); | 
|  | auto crsm_appendage = | 
|  | CompressedRowSparseMatrix::FromTripletSparseMatrix(tsm_appendage); | 
|  |  | 
|  | crsm->AppendRows(*crsm_appendage); | 
|  | CompareMatrices(tsm.get(), crsm.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) { | 
|  | int num_diagonal_rows = crsm->num_cols(); | 
|  |  | 
|  | auto diagonal = std::make_unique<double[]>(num_diagonal_rows); | 
|  | for (int i = 0; i < num_diagonal_rows; ++i) { | 
|  | diagonal[i] = i; | 
|  | } | 
|  |  | 
|  | std::vector<Block> row_and_column_blocks; | 
|  | row_and_column_blocks.emplace_back(1, 0); | 
|  | row_and_column_blocks.emplace_back(2, 1); | 
|  | row_and_column_blocks.emplace_back(2, 3); | 
|  |  | 
|  | const std::vector<Block> pre_row_blocks = crsm->row_blocks(); | 
|  | const std::vector<Block> pre_col_blocks = crsm->col_blocks(); | 
|  |  | 
|  | auto appendage = CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
|  | diagonal.get(), row_and_column_blocks); | 
|  |  | 
|  | crsm->AppendRows(*appendage); | 
|  |  | 
|  | const std::vector<Block> post_row_blocks = crsm->row_blocks(); | 
|  | const std::vector<Block> post_col_blocks = crsm->col_blocks(); | 
|  |  | 
|  | std::vector<Block> expected_row_blocks = pre_row_blocks; | 
|  | expected_row_blocks.insert(expected_row_blocks.end(), | 
|  | row_and_column_blocks.begin(), | 
|  | row_and_column_blocks.end()); | 
|  |  | 
|  | std::vector<Block> expected_col_blocks = pre_col_blocks; | 
|  |  | 
|  | EXPECT_EQ(expected_row_blocks, crsm->row_blocks()); | 
|  | EXPECT_EQ(expected_col_blocks, crsm->col_blocks()); | 
|  |  | 
|  | crsm->DeleteRows(num_diagonal_rows); | 
|  | EXPECT_EQ(crsm->row_blocks(), pre_row_blocks); | 
|  | EXPECT_EQ(crsm->col_blocks(), pre_col_blocks); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) { | 
|  | Matrix tsm_dense; | 
|  | Matrix crsm_dense; | 
|  |  | 
|  | tsm->ToDenseMatrix(&tsm_dense); | 
|  | crsm->ToDenseMatrix(&crsm_dense); | 
|  |  | 
|  | EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); | 
|  | } | 
|  |  | 
|  | TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) { | 
|  | CRSMatrix crs_matrix; | 
|  | crsm->ToCRSMatrix(&crs_matrix); | 
|  | EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows); | 
|  | EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols); | 
|  | EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size()); | 
|  | EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size()); | 
|  | EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size()); | 
|  |  | 
|  | for (int i = 0; i < crsm->num_rows() + 1; ++i) { | 
|  | EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < crsm->num_nonzeros(); ++i) { | 
|  | EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]); | 
|  | EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) { | 
|  | std::vector<Block> blocks; | 
|  | blocks.emplace_back(1, 0); | 
|  | blocks.emplace_back(2, 1); | 
|  | blocks.emplace_back(2, 3); | 
|  |  | 
|  | Vector diagonal(5); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | diagonal(i) = i + 1; | 
|  | } | 
|  |  | 
|  | auto matrix = CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( | 
|  | diagonal.data(), blocks); | 
|  |  | 
|  | EXPECT_EQ(matrix->num_rows(), 5); | 
|  | EXPECT_EQ(matrix->num_cols(), 5); | 
|  | EXPECT_EQ(matrix->num_nonzeros(), 9); | 
|  | EXPECT_EQ(blocks, matrix->row_blocks()); | 
|  | EXPECT_EQ(blocks, matrix->col_blocks()); | 
|  |  | 
|  | Vector x(5); | 
|  | Vector y(5); | 
|  |  | 
|  | x.setOnes(); | 
|  | y.setZero(); | 
|  | matrix->RightMultiplyAndAccumulate(x.data(), y.data()); | 
|  | for (int i = 0; i < diagonal.size(); ++i) { | 
|  | EXPECT_EQ(y[i], diagonal[i]); | 
|  | } | 
|  |  | 
|  | y.setZero(); | 
|  | matrix->LeftMultiplyAndAccumulate(x.data(), y.data()); | 
|  | for (int i = 0; i < diagonal.size(); ++i) { | 
|  | EXPECT_EQ(y[i], diagonal[i]); | 
|  | } | 
|  |  | 
|  | Matrix dense; | 
|  | matrix->ToDenseMatrix(&dense); | 
|  | EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0); | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseMatrix, Transpose) { | 
|  | //  0  1  0  2  3  0 | 
|  | //  4  6  7  0  0  8 | 
|  | //  9 10  0 11 12  0 | 
|  | // 13  0 14 15  9  0 | 
|  | //  0 16 17  0  0  0 | 
|  |  | 
|  | // Block structure: | 
|  | //  A  A  A  A  B  B | 
|  | //  A  A  A  A  B  B | 
|  | //  A  A  A  A  B  B | 
|  | //  C  C  C  C  D  D | 
|  | //  C  C  C  C  D  D | 
|  | //  C  C  C  C  D  D | 
|  |  | 
|  | CompressedRowSparseMatrix matrix(5, 6, 30); | 
|  | int* rows = matrix.mutable_rows(); | 
|  | int* cols = matrix.mutable_cols(); | 
|  | double* values = matrix.mutable_values(); | 
|  | matrix.mutable_row_blocks()->emplace_back(3, 0); | 
|  | matrix.mutable_row_blocks()->emplace_back(3, 3); | 
|  | matrix.mutable_col_blocks()->emplace_back(4, 0); | 
|  | matrix.mutable_col_blocks()->emplace_back(2, 4); | 
|  |  | 
|  | rows[0] = 0; | 
|  | cols[0] = 1; | 
|  | cols[1] = 3; | 
|  | cols[2] = 4; | 
|  |  | 
|  | rows[1] = 3; | 
|  | cols[3] = 0; | 
|  | cols[4] = 1; | 
|  | cols[5] = 2; | 
|  | cols[6] = 5; | 
|  |  | 
|  | rows[2] = 7; | 
|  | cols[7] = 0; | 
|  | cols[8] = 1; | 
|  | cols[9] = 3; | 
|  | cols[10] = 4; | 
|  |  | 
|  | rows[3] = 11; | 
|  | cols[11] = 0; | 
|  | cols[12] = 2; | 
|  | cols[13] = 3; | 
|  | cols[14] = 4; | 
|  |  | 
|  | rows[4] = 15; | 
|  | cols[15] = 1; | 
|  | cols[16] = 2; | 
|  | rows[5] = 17; | 
|  |  | 
|  | std::copy(values, values + 17, cols); | 
|  |  | 
|  | auto transpose = matrix.Transpose(); | 
|  |  | 
|  | ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size()); | 
|  | for (int i = 0; i < transpose->row_blocks().size(); ++i) { | 
|  | EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]); | 
|  | } | 
|  |  | 
|  | ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size()); | 
|  | for (int i = 0; i < transpose->col_blocks().size(); ++i) { | 
|  | EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]); | 
|  | } | 
|  |  | 
|  | Matrix dense_matrix; | 
|  | matrix.ToDenseMatrix(&dense_matrix); | 
|  |  | 
|  | Matrix dense_transpose; | 
|  | transpose->ToDenseMatrix(&dense_transpose); | 
|  | EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14); | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseMatrix, FromTripletSparseMatrix) { | 
|  | std::mt19937 prng; | 
|  | TripletSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_rows = 5; | 
|  | options.num_cols = 7; | 
|  | options.density = 0.5; | 
|  |  | 
|  | const int kNumTrials = 10; | 
|  | for (int i = 0; i < kNumTrials; ++i) { | 
|  | auto tsm = TripletSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | auto crsm = CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm); | 
|  |  | 
|  | Matrix expected; | 
|  | tsm->ToDenseMatrix(&expected); | 
|  | Matrix actual; | 
|  | crsm->ToDenseMatrix(&actual); | 
|  | EXPECT_NEAR((expected - actual).norm() / actual.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\nexpected: \n" | 
|  | << expected << "\nactual: \n" | 
|  | << actual; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseMatrix, FromTripletSparseMatrixTransposed) { | 
|  | std::mt19937 prng; | 
|  | TripletSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_rows = 5; | 
|  | options.num_cols = 7; | 
|  | options.density = 0.5; | 
|  |  | 
|  | const int kNumTrials = 10; | 
|  | for (int i = 0; i < kNumTrials; ++i) { | 
|  | auto tsm = TripletSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | auto crsm = | 
|  | CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm); | 
|  |  | 
|  | Matrix tmp; | 
|  | tsm->ToDenseMatrix(&tmp); | 
|  | Matrix expected = tmp.transpose(); | 
|  | Matrix actual; | 
|  | crsm->ToDenseMatrix(&actual); | 
|  | EXPECT_NEAR((expected - actual).norm() / actual.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon()) | 
|  | << "\nexpected: \n" | 
|  | << expected << "\nactual: \n" | 
|  | << actual; | 
|  | } | 
|  | } | 
|  |  | 
|  | using Param = ::testing::tuple<CompressedRowSparseMatrix::StorageType>; | 
|  |  | 
|  | static std::string ParamInfoToString(testing::TestParamInfo<Param> info) { | 
|  | if (::testing::get<0>(info.param) == | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) { | 
|  | return "UPPER"; | 
|  | } | 
|  |  | 
|  | if (::testing::get<0>(info.param) == | 
|  | CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR) { | 
|  | return "LOWER"; | 
|  | } | 
|  |  | 
|  | return "UNSYMMETRIC"; | 
|  | } | 
|  |  | 
|  | class RightMultiplyAndAccumulateTest : public ::testing::TestWithParam<Param> { | 
|  | }; | 
|  |  | 
|  | TEST_P(RightMultiplyAndAccumulateTest, _) { | 
|  | const int kMinNumBlocks = 1; | 
|  | const int kMaxNumBlocks = 10; | 
|  | const int kMinBlockSize = 1; | 
|  | const int kMaxBlockSize = 5; | 
|  | const int kNumTrials = 10; | 
|  | std::mt19937 prng; | 
|  | std::uniform_real_distribution<double> uniform(0.5, 1.0); | 
|  | for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; | 
|  | ++num_blocks) { | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | Param param = GetParam(); | 
|  | CompressedRowSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_col_blocks = num_blocks; | 
|  | options.min_col_block_size = kMinBlockSize; | 
|  | options.max_col_block_size = kMaxBlockSize; | 
|  | options.num_row_blocks = 2 * num_blocks; | 
|  | options.min_row_block_size = kMinBlockSize; | 
|  | options.max_row_block_size = kMaxBlockSize; | 
|  | options.block_density = uniform(prng); | 
|  | options.storage_type = ::testing::get<0>(param); | 
|  | auto matrix = | 
|  | CompressedRowSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | const int num_rows = matrix->num_rows(); | 
|  | const int num_cols = matrix->num_cols(); | 
|  |  | 
|  | Vector x(num_cols); | 
|  | x.setRandom(); | 
|  |  | 
|  | Vector actual_y(num_rows); | 
|  | actual_y.setZero(); | 
|  | matrix->RightMultiplyAndAccumulate(x.data(), actual_y.data()); | 
|  |  | 
|  | Matrix dense; | 
|  | matrix->ToDenseMatrix(&dense); | 
|  | Vector expected_y; | 
|  | if (::testing::get<0>(param) == | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) { | 
|  | expected_y = dense.selfadjointView<Eigen::Upper>() * x; | 
|  | } else if (::testing::get<0>(param) == | 
|  | CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR) { | 
|  | expected_y = dense.selfadjointView<Eigen::Lower>() * x; | 
|  | } else { | 
|  | expected_y = dense * x; | 
|  | } | 
|  |  | 
|  | ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon() * 10) | 
|  | << "\n" | 
|  | << dense << "x:\n" | 
|  | << x.transpose() << "\n" | 
|  | << "expected: \n" | 
|  | << expected_y.transpose() << "\n" | 
|  | << "actual: \n" | 
|  | << actual_y.transpose(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | CompressedRowSparseMatrix, | 
|  | RightMultiplyAndAccumulateTest, | 
|  | ::testing::Values(CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR, | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR, | 
|  | CompressedRowSparseMatrix::StorageType::UNSYMMETRIC), | 
|  | ParamInfoToString); | 
|  |  | 
|  | class LeftMultiplyAndAccumulateTest : public ::testing::TestWithParam<Param> {}; | 
|  |  | 
|  | TEST_P(LeftMultiplyAndAccumulateTest, _) { | 
|  | const int kMinNumBlocks = 1; | 
|  | const int kMaxNumBlocks = 10; | 
|  | const int kMinBlockSize = 1; | 
|  | const int kMaxBlockSize = 5; | 
|  | const int kNumTrials = 10; | 
|  | std::mt19937 prng; | 
|  | std::uniform_real_distribution<double> uniform(0.5, 1.0); | 
|  | for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; | 
|  | ++num_blocks) { | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | Param param = GetParam(); | 
|  | CompressedRowSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_col_blocks = num_blocks; | 
|  | options.min_col_block_size = kMinBlockSize; | 
|  | options.max_col_block_size = kMaxBlockSize; | 
|  | options.num_row_blocks = 2 * num_blocks; | 
|  | options.min_row_block_size = kMinBlockSize; | 
|  | options.max_row_block_size = kMaxBlockSize; | 
|  | options.block_density = uniform(prng); | 
|  | options.storage_type = ::testing::get<0>(param); | 
|  | auto matrix = | 
|  | CompressedRowSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | const int num_rows = matrix->num_rows(); | 
|  | const int num_cols = matrix->num_cols(); | 
|  |  | 
|  | Vector x(num_rows); | 
|  | x.setRandom(); | 
|  |  | 
|  | Vector actual_y(num_cols); | 
|  | actual_y.setZero(); | 
|  | matrix->LeftMultiplyAndAccumulate(x.data(), actual_y.data()); | 
|  |  | 
|  | Matrix dense; | 
|  | matrix->ToDenseMatrix(&dense); | 
|  | Vector expected_y; | 
|  | if (::testing::get<0>(param) == | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) { | 
|  | expected_y = dense.selfadjointView<Eigen::Upper>() * x; | 
|  | } else if (::testing::get<0>(param) == | 
|  | CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR) { | 
|  | expected_y = dense.selfadjointView<Eigen::Lower>() * x; | 
|  | } else { | 
|  | expected_y = dense.transpose() * x; | 
|  | } | 
|  |  | 
|  | ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon() * 10) | 
|  | << "\n" | 
|  | << dense << "x\n" | 
|  | << x.transpose() << "\n" | 
|  | << "expected: \n" | 
|  | << expected_y.transpose() << "\n" | 
|  | << "actual: \n" | 
|  | << actual_y.transpose(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | CompressedRowSparseMatrix, | 
|  | LeftMultiplyAndAccumulateTest, | 
|  | ::testing::Values(CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR, | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR, | 
|  | CompressedRowSparseMatrix::StorageType::UNSYMMETRIC), | 
|  | ParamInfoToString); | 
|  |  | 
|  | class SquaredColumnNormTest : public ::testing::TestWithParam<Param> {}; | 
|  |  | 
|  | TEST_P(SquaredColumnNormTest, _) { | 
|  | const int kMinNumBlocks = 1; | 
|  | const int kMaxNumBlocks = 10; | 
|  | const int kMinBlockSize = 1; | 
|  | const int kMaxBlockSize = 5; | 
|  | const int kNumTrials = 10; | 
|  | std::mt19937 prng; | 
|  | std::uniform_real_distribution<double> uniform(0.5, 1.0); | 
|  | for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks; | 
|  | ++num_blocks) { | 
|  | for (int trial = 0; trial < kNumTrials; ++trial) { | 
|  | Param param = GetParam(); | 
|  | CompressedRowSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_col_blocks = num_blocks; | 
|  | options.min_col_block_size = kMinBlockSize; | 
|  | options.max_col_block_size = kMaxBlockSize; | 
|  | options.num_row_blocks = 2 * num_blocks; | 
|  | options.min_row_block_size = kMinBlockSize; | 
|  | options.max_row_block_size = kMaxBlockSize; | 
|  | options.block_density = uniform(prng); | 
|  | options.storage_type = ::testing::get<0>(param); | 
|  | auto matrix = | 
|  | CompressedRowSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | const int num_cols = matrix->num_cols(); | 
|  |  | 
|  | Vector actual(num_cols); | 
|  | actual.setZero(); | 
|  | matrix->SquaredColumnNorm(actual.data()); | 
|  |  | 
|  | Matrix dense; | 
|  | matrix->ToDenseMatrix(&dense); | 
|  | Vector expected; | 
|  | if (::testing::get<0>(param) == | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR) { | 
|  | const Matrix full = dense.selfadjointView<Eigen::Upper>(); | 
|  | expected = full.colwise().squaredNorm(); | 
|  | } else if (::testing::get<0>(param) == | 
|  | CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR) { | 
|  | const Matrix full = dense.selfadjointView<Eigen::Lower>(); | 
|  | expected = full.colwise().squaredNorm(); | 
|  | } else { | 
|  | expected = dense.colwise().squaredNorm(); | 
|  | } | 
|  |  | 
|  | ASSERT_NEAR((expected - actual).norm() / actual.norm(), | 
|  | 0.0, | 
|  | std::numeric_limits<double>::epsilon() * 10) | 
|  | << "\n" | 
|  | << dense << "expected: \n" | 
|  | << expected.transpose() << "\n" | 
|  | << "actual: \n" | 
|  | << actual.transpose(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | CompressedRowSparseMatrix, | 
|  | SquaredColumnNormTest, | 
|  | ::testing::Values(CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR, | 
|  | CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR, | 
|  | CompressedRowSparseMatrix::StorageType::UNSYMMETRIC), | 
|  | ParamInfoToString); | 
|  |  | 
|  | // TODO(sameeragarwal) Add tests for the random matrix creation methods. | 
|  |  | 
|  | }  // namespace ceres::internal |