| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: fredp@google.com (Fred Pighin) | 
 | // | 
 | // TODO(sameeragarwal): More comprehensive testing with larger and | 
 | // more badly conditioned problem. | 
 |  | 
 | #include "ceres/conjugate_gradients_solver.h" | 
 |  | 
 | #include <memory> | 
 |  | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/preconditioner.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | TEST(ConjugateGradientTest, Solves3x3IdentitySystem) { | 
 |   double diagonal[] = {1.0, 1.0, 1.0}; | 
 |   std::unique_ptr<TripletSparseMatrix> A( | 
 |       TripletSparseMatrix::CreateSparseDiagonalMatrix(diagonal, 3)); | 
 |   Vector b(3); | 
 |   Vector x(3); | 
 |  | 
 |   b(0) = 1.0; | 
 |   b(1) = 2.0; | 
 |   b(2) = 3.0; | 
 |  | 
 |   x(0) = 1; | 
 |   x(1) = 1; | 
 |   x(2) = 1; | 
 |  | 
 |   ConjugateGradientsSolverOptions cg_options; | 
 |   cg_options.min_num_iterations = 1; | 
 |   cg_options.max_num_iterations = 10; | 
 |   cg_options.residual_reset_period = 20; | 
 |   cg_options.q_tolerance = 0.0; | 
 |   cg_options.r_tolerance = 1e-9; | 
 |  | 
 |   Vector scratch[4]; | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     scratch[i] = Vector::Zero(A->num_cols()); | 
 |   } | 
 |  | 
 |   IdentityPreconditioner identity(A->num_cols()); | 
 |   LinearOperatorAdapter lhs(*A); | 
 |   LinearOperatorAdapter preconditioner(identity); | 
 |   Vector* scratch_array[4] = { | 
 |       &scratch[0], &scratch[1], &scratch[2], &scratch[3]}; | 
 |   auto summary = ConjugateGradientsSolver( | 
 |       cg_options, lhs, b, preconditioner, scratch_array, x); | 
 |  | 
 |   EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
 |   ASSERT_EQ(summary.num_iterations, 1); | 
 |  | 
 |   ASSERT_DOUBLE_EQ(1, x(0)); | 
 |   ASSERT_DOUBLE_EQ(2, x(1)); | 
 |   ASSERT_DOUBLE_EQ(3, x(2)); | 
 | } | 
 |  | 
 | TEST(ConjuateGradientTest, Solves3x3SymmetricSystem) { | 
 |   std::unique_ptr<TripletSparseMatrix> A(new TripletSparseMatrix(3, 3, 9)); | 
 |   Vector b(3); | 
 |   Vector x(3); | 
 |  | 
 |   //      | 2  -1  0| | 
 |   //  A = |-1   2 -1| is symmetric positive definite. | 
 |   //      | 0  -1  2| | 
 |   int* Ai = A->mutable_rows(); | 
 |   int* Aj = A->mutable_cols(); | 
 |   double* Ax = A->mutable_values(); | 
 |   int counter = 0; | 
 |   for (int i = 0; i < 3; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       Ai[counter] = i; | 
 |       Aj[counter] = j; | 
 |       ++counter; | 
 |     } | 
 |   } | 
 |   Ax[0] = 2.; | 
 |   Ax[1] = -1.; | 
 |   Ax[2] = 0; | 
 |   Ax[3] = -1.; | 
 |   Ax[4] = 2; | 
 |   Ax[5] = -1; | 
 |   Ax[6] = 0; | 
 |   Ax[7] = -1; | 
 |   Ax[8] = 2; | 
 |   A->set_num_nonzeros(9); | 
 |  | 
 |   b(0) = -1; | 
 |   b(1) = 0; | 
 |   b(2) = 3; | 
 |  | 
 |   x(0) = 1; | 
 |   x(1) = 1; | 
 |   x(2) = 1; | 
 |  | 
 |   ConjugateGradientsSolverOptions cg_options; | 
 |   cg_options.min_num_iterations = 1; | 
 |   cg_options.max_num_iterations = 10; | 
 |   cg_options.residual_reset_period = 20; | 
 |   cg_options.q_tolerance = 0.0; | 
 |   cg_options.r_tolerance = 1e-9; | 
 |  | 
 |   Vector scratch[4]; | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     scratch[i] = Vector::Zero(A->num_cols()); | 
 |   } | 
 |   Vector* scratch_array[4] = { | 
 |       &scratch[0], &scratch[1], &scratch[2], &scratch[3]}; | 
 |   IdentityPreconditioner identity(A->num_cols()); | 
 |   LinearOperatorAdapter lhs(*A); | 
 |   LinearOperatorAdapter preconditioner(identity); | 
 |  | 
 |   auto summary = ConjugateGradientsSolver( | 
 |       cg_options, lhs, b, preconditioner, scratch_array, x); | 
 |  | 
 |   EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
 |  | 
 |   ASSERT_DOUBLE_EQ(0, x(0)); | 
 |   ASSERT_DOUBLE_EQ(1, x(1)); | 
 |   ASSERT_DOUBLE_EQ(2, x(2)); | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |