| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/dogleg_strategy.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 |  | 
 | #include "Eigen/Dense" | 
 | #include "ceres/array_utils.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/polynomial.h" | 
 | #include "ceres/sparse_matrix.h" | 
 | #include "ceres/trust_region_strategy.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 | namespace { | 
 | const double kMaxMu = 1.0; | 
 | const double kMinMu = 1e-8; | 
 | }  // namespace | 
 |  | 
 | DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options) | 
 |     : linear_solver_(options.linear_solver), | 
 |       radius_(options.initial_radius), | 
 |       max_radius_(options.max_radius), | 
 |       min_diagonal_(options.min_lm_diagonal), | 
 |       max_diagonal_(options.max_lm_diagonal), | 
 |       mu_(kMinMu), | 
 |       min_mu_(kMinMu), | 
 |       max_mu_(kMaxMu), | 
 |       mu_increase_factor_(10.0), | 
 |       increase_threshold_(0.75), | 
 |       decrease_threshold_(0.25), | 
 |       dogleg_step_norm_(0.0), | 
 |       reuse_(false), | 
 |       dogleg_type_(options.dogleg_type) { | 
 |   CHECK(linear_solver_ != nullptr); | 
 |   CHECK_GT(min_diagonal_, 0.0); | 
 |   CHECK_LE(min_diagonal_, max_diagonal_); | 
 |   CHECK_GT(max_radius_, 0.0); | 
 | } | 
 |  | 
 | // If the reuse_ flag is not set, then the Cauchy point (scaled | 
 | // gradient) and the new Gauss-Newton step are computed from | 
 | // scratch. The Dogleg step is then computed as interpolation of these | 
 | // two vectors. | 
 | TrustRegionStrategy::Summary DoglegStrategy::ComputeStep( | 
 |     const TrustRegionStrategy::PerSolveOptions& per_solve_options, | 
 |     SparseMatrix* jacobian, | 
 |     const double* residuals, | 
 |     double* step) { | 
 |   CHECK(jacobian != nullptr); | 
 |   CHECK(residuals != nullptr); | 
 |   CHECK(step != nullptr); | 
 |  | 
 |   const int n = jacobian->num_cols(); | 
 |   if (reuse_) { | 
 |     // Gauss-Newton and gradient vectors are always available, only a | 
 |     // new interpolant need to be computed. For the subspace case, | 
 |     // the subspace and the two-dimensional model are also still valid. | 
 |     switch (dogleg_type_) { | 
 |       case TRADITIONAL_DOGLEG: | 
 |         ComputeTraditionalDoglegStep(step); | 
 |         break; | 
 |  | 
 |       case SUBSPACE_DOGLEG: | 
 |         ComputeSubspaceDoglegStep(step); | 
 |         break; | 
 |     } | 
 |     TrustRegionStrategy::Summary summary; | 
 |     summary.num_iterations = 0; | 
 |     summary.termination_type = LinearSolverTerminationType::SUCCESS; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   reuse_ = true; | 
 |   // Check that we have the storage needed to hold the various | 
 |   // temporary vectors. | 
 |   if (diagonal_.rows() != n) { | 
 |     diagonal_.resize(n, 1); | 
 |     gradient_.resize(n, 1); | 
 |     gauss_newton_step_.resize(n, 1); | 
 |   } | 
 |  | 
 |   // Vector used to form the diagonal matrix that is used to | 
 |   // regularize the Gauss-Newton solve and that defines the | 
 |   // elliptical trust region | 
 |   // | 
 |   //   || D * step || <= radius_ . | 
 |   // | 
 |   jacobian->SquaredColumnNorm(diagonal_.data()); | 
 |   for (int i = 0; i < n; ++i) { | 
 |     diagonal_[i] = | 
 |         std::min(std::max(diagonal_[i], min_diagonal_), max_diagonal_); | 
 |   } | 
 |   diagonal_ = diagonal_.array().sqrt(); | 
 |  | 
 |   ComputeGradient(jacobian, residuals); | 
 |   ComputeCauchyPoint(jacobian); | 
 |  | 
 |   LinearSolver::Summary linear_solver_summary = | 
 |       ComputeGaussNewtonStep(per_solve_options, jacobian, residuals); | 
 |  | 
 |   TrustRegionStrategy::Summary summary; | 
 |   summary.residual_norm = linear_solver_summary.residual_norm; | 
 |   summary.num_iterations = linear_solver_summary.num_iterations; | 
 |   summary.termination_type = linear_solver_summary.termination_type; | 
 |  | 
 |   if (linear_solver_summary.termination_type == | 
 |       LinearSolverTerminationType::FATAL_ERROR) { | 
 |     return summary; | 
 |   } | 
 |  | 
 |   if (linear_solver_summary.termination_type != | 
 |       LinearSolverTerminationType::FAILURE) { | 
 |     switch (dogleg_type_) { | 
 |       // Interpolate the Cauchy point and the Gauss-Newton step. | 
 |       case TRADITIONAL_DOGLEG: | 
 |         ComputeTraditionalDoglegStep(step); | 
 |         break; | 
 |  | 
 |       // Find the minimum in the subspace defined by the | 
 |       // Cauchy point and the (Gauss-)Newton step. | 
 |       case SUBSPACE_DOGLEG: | 
 |         if (!ComputeSubspaceModel(jacobian)) { | 
 |           summary.termination_type = LinearSolverTerminationType::FAILURE; | 
 |           break; | 
 |         } | 
 |         ComputeSubspaceDoglegStep(step); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   return summary; | 
 | } | 
 |  | 
 | // The trust region is assumed to be elliptical with the | 
 | // diagonal scaling matrix D defined by sqrt(diagonal_). | 
 | // It is implemented by substituting step' = D * step. | 
 | // The trust region for step' is spherical. | 
 | // The gradient, the Gauss-Newton step, the Cauchy point, | 
 | // and all calculations involving the Jacobian have to | 
 | // be adjusted accordingly. | 
 | void DoglegStrategy::ComputeGradient(SparseMatrix* jacobian, | 
 |                                      const double* residuals) { | 
 |   gradient_.setZero(); | 
 |   jacobian->LeftMultiplyAndAccumulate(residuals, gradient_.data()); | 
 |   gradient_.array() /= diagonal_.array(); | 
 | } | 
 |  | 
 | // The Cauchy point is the global minimizer of the quadratic model | 
 | // along the one-dimensional subspace spanned by the gradient. | 
 | void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) { | 
 |   // alpha * -gradient is the Cauchy point. | 
 |   Vector Jg(jacobian->num_rows()); | 
 |   Jg.setZero(); | 
 |   // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g)) | 
 |   // instead of (J * D^-1) * (D^-1 * g). | 
 |   Vector scaled_gradient = (gradient_.array() / diagonal_.array()).matrix(); | 
 |   jacobian->RightMultiplyAndAccumulate(scaled_gradient.data(), Jg.data()); | 
 |   alpha_ = gradient_.squaredNorm() / Jg.squaredNorm(); | 
 | } | 
 |  | 
 | // The dogleg step is defined as the intersection of the trust region | 
 | // boundary with the piecewise linear path from the origin to the Cauchy | 
 | // point and then from there to the Gauss-Newton point (global minimizer | 
 | // of the model function). The Gauss-Newton point is taken if it lies | 
 | // within the trust region. | 
 | void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) { | 
 |   VectorRef dogleg_step(dogleg, gradient_.rows()); | 
 |  | 
 |   // Case 1. The Gauss-Newton step lies inside the trust region, and | 
 |   // is therefore the optimal solution to the trust-region problem. | 
 |   const double gradient_norm = gradient_.norm(); | 
 |   const double gauss_newton_norm = gauss_newton_step_.norm(); | 
 |   if (gauss_newton_norm <= radius_) { | 
 |     dogleg_step = gauss_newton_step_; | 
 |     dogleg_step_norm_ = gauss_newton_norm; | 
 |     dogleg_step.array() /= diagonal_.array(); | 
 |     VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_ | 
 |             << " radius: " << radius_; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Case 2. The Cauchy point and the Gauss-Newton steps lie outside | 
 |   // the trust region. Rescale the Cauchy point to the trust region | 
 |   // and return. | 
 |   if (gradient_norm * alpha_ >= radius_) { | 
 |     dogleg_step = -(radius_ / gradient_norm) * gradient_; | 
 |     dogleg_step_norm_ = radius_; | 
 |     dogleg_step.array() /= diagonal_.array(); | 
 |     VLOG(3) << "Cauchy step size: " << dogleg_step_norm_ | 
 |             << " radius: " << radius_; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Case 3. The Cauchy point is inside the trust region and the | 
 |   // Gauss-Newton step is outside. Compute the line joining the two | 
 |   // points and the point on it which intersects the trust region | 
 |   // boundary. | 
 |  | 
 |   // a = alpha * -gradient | 
 |   // b = gauss_newton_step | 
 |   const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_); | 
 |   const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0); | 
 |   const double b_minus_a_squared_norm = | 
 |       a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2); | 
 |  | 
 |   // c = a' (b - a) | 
 |   //   = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2 | 
 |   const double c = b_dot_a - a_squared_norm; | 
 |   const double d = sqrt(c * c + b_minus_a_squared_norm * | 
 |                                     (pow(radius_, 2.0) - a_squared_norm)); | 
 |  | 
 |   double beta = (c <= 0) ? (d - c) / b_minus_a_squared_norm | 
 |                          : (radius_ * radius_ - a_squared_norm) / (d + c); | 
 |   dogleg_step = | 
 |       (-alpha_ * (1.0 - beta)) * gradient_ + beta * gauss_newton_step_; | 
 |   dogleg_step_norm_ = dogleg_step.norm(); | 
 |   dogleg_step.array() /= diagonal_.array(); | 
 |   VLOG(3) << "Dogleg step size: " << dogleg_step_norm_ | 
 |           << " radius: " << radius_; | 
 | } | 
 |  | 
 | // The subspace method finds the minimum of the two-dimensional problem | 
 | // | 
 | //   min. 1/2 x' B' H B x + g' B x | 
 | //   s.t. || B x ||^2 <= r^2 | 
 | // | 
 | // where r is the trust region radius and B is the matrix with unit columns | 
 | // spanning the subspace defined by the steepest descent and Newton direction. | 
 | // This subspace by definition includes the Gauss-Newton point, which is | 
 | // therefore taken if it lies within the trust region. | 
 | void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) { | 
 |   VectorRef dogleg_step(dogleg, gradient_.rows()); | 
 |  | 
 |   // The Gauss-Newton point is inside the trust region if |GN| <= radius_. | 
 |   // This test is valid even though radius_ is a length in the two-dimensional | 
 |   // subspace while gauss_newton_step_ is expressed in the (scaled) | 
 |   // higher dimensional original space. This is because | 
 |   // | 
 |   //   1. gauss_newton_step_ by definition lies in the subspace, and | 
 |   //   2. the subspace basis is orthonormal. | 
 |   // | 
 |   // As a consequence, the norm of the gauss_newton_step_ in the subspace is | 
 |   // the same as its norm in the original space. | 
 |   const double gauss_newton_norm = gauss_newton_step_.norm(); | 
 |   if (gauss_newton_norm <= radius_) { | 
 |     dogleg_step = gauss_newton_step_; | 
 |     dogleg_step_norm_ = gauss_newton_norm; | 
 |     dogleg_step.array() /= diagonal_.array(); | 
 |     VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_ | 
 |             << " radius: " << radius_; | 
 |     return; | 
 |   } | 
 |  | 
 |   // The optimum lies on the boundary of the trust region. The above problem | 
 |   // therefore becomes | 
 |   // | 
 |   //   min. 1/2 x^T B^T H B x + g^T B x | 
 |   //   s.t. || B x ||^2 = r^2 | 
 |   // | 
 |   // Notice the equality in the constraint. | 
 |   // | 
 |   // This can be solved by forming the Lagrangian, solving for x(y), where | 
 |   // y is the Lagrange multiplier, using the gradient of the objective, and | 
 |   // putting x(y) back into the constraint. This results in a fourth order | 
 |   // polynomial in y, which can be solved using e.g. the companion matrix. | 
 |   // See the description of MakePolynomialForBoundaryConstrainedProblem for | 
 |   // details. The result is up to four real roots y*, not all of which | 
 |   // correspond to feasible points. The feasible points x(y*) have to be | 
 |   // tested for optimality. | 
 |  | 
 |   if (subspace_is_one_dimensional_) { | 
 |     // The subspace is one-dimensional, so both the gradient and | 
 |     // the Gauss-Newton step point towards the same direction. | 
 |     // In this case, we move along the gradient until we reach the trust | 
 |     // region boundary. | 
 |     dogleg_step = -(radius_ / gradient_.norm()) * gradient_; | 
 |     dogleg_step_norm_ = radius_; | 
 |     dogleg_step.array() /= diagonal_.array(); | 
 |     VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_ | 
 |             << " radius: " << radius_; | 
 |     return; | 
 |   } | 
 |  | 
 |   Vector2d minimum(0.0, 0.0); | 
 |   if (!FindMinimumOnTrustRegionBoundary(&minimum)) { | 
 |     // For the positive semi-definite case, a traditional dogleg step | 
 |     // is taken in this case. | 
 |     LOG(WARNING) << "Failed to compute polynomial roots. " | 
 |                  << "Taking traditional dogleg step instead."; | 
 |     ComputeTraditionalDoglegStep(dogleg); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Test first order optimality at the minimum. | 
 |   // The first order KKT conditions state that the minimum x* | 
 |   // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within | 
 |   // the trust region), or | 
 |   // | 
 |   //   (B x* + g) + y x* = 0 | 
 |   // | 
 |   // for some positive scalar y. | 
 |   // Here, as it is already known that the minimum lies on the boundary, the | 
 |   // latter condition is tested. To allow for small imprecisions, we test if | 
 |   // the angle between (B x* + g) and -x* is smaller than acos(0.99). | 
 |   // The exact value of the cosine is arbitrary but should be close to 1. | 
 |   // | 
 |   // This condition should not be violated. If it is, the minimum was not | 
 |   // correctly determined. | 
 |   const double kCosineThreshold = 0.99; | 
 |   const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_; | 
 |   const double cosine_angle = | 
 |       -minimum.dot(grad_minimum) / (minimum.norm() * grad_minimum.norm()); | 
 |   if (cosine_angle < kCosineThreshold) { | 
 |     LOG(WARNING) << "First order optimality seems to be violated " | 
 |                  << "in the subspace method!\n" | 
 |                  << "Cosine of angle between x and B x + g is " << cosine_angle | 
 |                  << ".\n" | 
 |                  << "Taking a regular dogleg step instead.\n" | 
 |                  << "Please consider filing a bug report if this " | 
 |                  << "happens frequently or consistently.\n"; | 
 |     ComputeTraditionalDoglegStep(dogleg); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Create the full step from the optimal 2d solution. | 
 |   dogleg_step = subspace_basis_ * minimum; | 
 |   dogleg_step_norm_ = radius_; | 
 |   dogleg_step.array() /= diagonal_.array(); | 
 |   VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_ | 
 |           << " radius: " << radius_; | 
 | } | 
 |  | 
 | // Build the polynomial that defines the optimal Lagrange multipliers. | 
 | // Let the Lagrangian be | 
 | // | 
 | //   L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2).       (1) | 
 | // | 
 | // Stationary points of the Lagrangian are given by | 
 | // | 
 | //   0 = d L(x, y) / dx = Bx + g + y x                              (2) | 
 | //   0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2                       (3) | 
 | // | 
 | // For any given y, we can solve (2) for x as | 
 | // | 
 | //   x(y) = -(B + y I)^-1 g .                                       (4) | 
 | // | 
 | // As B + y I is 2x2, we form the inverse explicitly: | 
 | // | 
 | //   (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I)                 (5) | 
 | // | 
 | // where adj() denotes adjugation. This should be safe, as B is positive | 
 | // semi-definite and y is necessarily positive, so (B + y I) is indeed | 
 | // invertible. | 
 | // Plugging (5) into (4) and the result into (3), then dividing by 0.5 we | 
 | // obtain | 
 | // | 
 | //   0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2 | 
 | //                                                                  (6) | 
 | // | 
 | // or | 
 | // | 
 | //   det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g         (7a) | 
 | //                      = g^T adj(B)^T adj(B) g | 
 | //                           + 2 y g^T adj(B)^T g + y^2 g^T g       (7b) | 
 | // | 
 | // as | 
 | // | 
 | //   adj(B + y I) = adj(B) + y I = adj(B)^T + y I .                 (8) | 
 | // | 
 | // The left hand side can be expressed explicitly using | 
 | // | 
 | //   det(B + y I) = det(B) + y tr(B) + y^2 .                        (9) | 
 | // | 
 | // So (7) is a polynomial in y of degree four. | 
 | // Bringing everything back to the left hand side, the coefficients can | 
 | // be read off as | 
 | // | 
 | //     y^4  r^2 | 
 | //   + y^3  2 r^2 tr(B) | 
 | //   + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g) | 
 | //   + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g) | 
 | //   + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g) | 
 | // | 
 | Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const { | 
 |   const double detB = subspace_B_.determinant(); | 
 |   const double trB = subspace_B_.trace(); | 
 |   const double r2 = radius_ * radius_; | 
 |   Matrix2d B_adj; | 
 |   // clang-format off | 
 |   B_adj <<  subspace_B_(1, 1) , -subspace_B_(0, 1), | 
 |            -subspace_B_(1, 0) ,  subspace_B_(0, 0); | 
 |   // clang-format on | 
 |  | 
 |   Vector polynomial(5); | 
 |   polynomial(0) = r2; | 
 |   polynomial(1) = 2.0 * r2 * trB; | 
 |   polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm(); | 
 |   polynomial(3) = | 
 |       -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_ - r2 * detB * trB); | 
 |   polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm(); | 
 |  | 
 |   return polynomial; | 
 | } | 
 |  | 
 | // Given a Lagrange multiplier y that corresponds to a stationary point | 
 | // of the Lagrangian L(x, y), compute the corresponding x from the | 
 | // equation | 
 | // | 
 | //   0 = d L(x, y) / dx | 
 | //     = B * x + g + y * x | 
 | //     = (B + y * I) * x + g | 
 | // | 
 | DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot( | 
 |     double y) const { | 
 |   const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity(); | 
 |   return -B_i.partialPivLu().solve(subspace_g_); | 
 | } | 
 |  | 
 | // This function evaluates the quadratic model at a point x in the | 
 | // subspace spanned by subspace_basis_. | 
 | double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const { | 
 |   return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x); | 
 | } | 
 |  | 
 | // This function attempts to solve the boundary-constrained subspace problem | 
 | // | 
 | //   min. 1/2 x^T B^T H B x + g^T B x | 
 | //   s.t. || B x ||^2 = r^2 | 
 | // | 
 | // where B is an orthonormal subspace basis and r is the trust-region radius. | 
 | // | 
 | // This is done by finding the roots of a fourth degree polynomial. If the | 
 | // root finding fails, the function returns false and minimum will be set | 
 | // to (0, 0). If it succeeds, true is returned. | 
 | // | 
 | // In the failure case, another step should be taken, such as the traditional | 
 | // dogleg step. | 
 | bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const { | 
 |   CHECK(minimum != nullptr); | 
 |  | 
 |   // Return (0, 0) in all error cases. | 
 |   minimum->setZero(); | 
 |  | 
 |   // Create the fourth-degree polynomial that is a necessary condition for | 
 |   // optimality. | 
 |   const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem(); | 
 |  | 
 |   // Find the real parts y_i of its roots (not only the real roots). | 
 |   Vector roots_real; | 
 |   if (!FindPolynomialRoots(polynomial, &roots_real, nullptr)) { | 
 |     // Failed to find the roots of the polynomial, i.e. the candidate | 
 |     // solutions of the constrained problem. Report this back to the caller. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // For each root y, compute B x(y) and check for feasibility. | 
 |   // Notice that there should always be four roots, as the leading term of | 
 |   // the polynomial is r^2 and therefore non-zero. However, as some roots | 
 |   // may be complex, the real parts are not necessarily unique. | 
 |   double minimum_value = std::numeric_limits<double>::max(); | 
 |   bool valid_root_found = false; | 
 |   for (int i = 0; i < roots_real.size(); ++i) { | 
 |     const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i)); | 
 |  | 
 |     // Not all roots correspond to points on the trust region boundary. | 
 |     // There are at most four candidate solutions. As we are interested | 
 |     // in the minimum, it is safe to consider all of them after projecting | 
 |     // them onto the trust region boundary. | 
 |     if (x_i.norm() > 0) { | 
 |       const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i); | 
 |       valid_root_found = true; | 
 |       if (f_i < minimum_value) { | 
 |         minimum_value = f_i; | 
 |         *minimum = x_i; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return valid_root_found; | 
 | } | 
 |  | 
 | LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep( | 
 |     const PerSolveOptions& per_solve_options, | 
 |     SparseMatrix* jacobian, | 
 |     const double* residuals) { | 
 |   const int n = jacobian->num_cols(); | 
 |   LinearSolver::Summary linear_solver_summary; | 
 |   linear_solver_summary.termination_type = LinearSolverTerminationType::FAILURE; | 
 |  | 
 |   // The Jacobian matrix is often quite poorly conditioned. Thus it is | 
 |   // necessary to add a diagonal matrix at the bottom to prevent the | 
 |   // linear solver from failing. | 
 |   // | 
 |   // We do this by computing the same diagonal matrix as the one used | 
 |   // by Levenberg-Marquardt (other choices are possible), and scaling | 
 |   // it by a small constant (independent of the trust region radius). | 
 |   // | 
 |   // If the solve fails, the multiplier to the diagonal is increased | 
 |   // up to max_mu_ by a factor of mu_increase_factor_ every time. If | 
 |   // the linear solver is still not successful, the strategy returns | 
 |   // with LinearSolverTerminationType::FAILURE. | 
 |   // | 
 |   // Next time when a new Gauss-Newton step is requested, the | 
 |   // multiplier starts out from the last successful solve. | 
 |   // | 
 |   // When a step is declared successful, the multiplier is decreased | 
 |   // by half of mu_increase_factor_. | 
 |  | 
 |   while (mu_ < max_mu_) { | 
 |     // Dogleg, as far as I (sameeragarwal) understand it, requires a | 
 |     // reasonably good estimate of the Gauss-Newton step. This means | 
 |     // that we need to solve the normal equations more or less | 
 |     // exactly. This is reflected in the values of the tolerances set | 
 |     // below. | 
 |     // | 
 |     // For now, this strategy should only be used with exact | 
 |     // factorization based solvers, for which these tolerances are | 
 |     // automatically satisfied. | 
 |     // | 
 |     // The right way to combine inexact solves with trust region | 
 |     // methods is to use Stiehaug's method. | 
 |     LinearSolver::PerSolveOptions solve_options; | 
 |     solve_options.q_tolerance = 0.0; | 
 |     solve_options.r_tolerance = 0.0; | 
 |  | 
 |     lm_diagonal_ = diagonal_ * std::sqrt(mu_); | 
 |     solve_options.D = lm_diagonal_.data(); | 
 |  | 
 |     // As in the LevenbergMarquardtStrategy, solve Jy = r instead | 
 |     // of Jx = -r and later set x = -y to avoid having to modify | 
 |     // either jacobian or residuals. | 
 |     InvalidateArray(n, gauss_newton_step_.data()); | 
 |     linear_solver_summary = linear_solver_->Solve( | 
 |         jacobian, residuals, solve_options, gauss_newton_step_.data()); | 
 |  | 
 |     if (per_solve_options.dump_format_type == CONSOLE || | 
 |         (per_solve_options.dump_format_type != CONSOLE && | 
 |          !per_solve_options.dump_filename_base.empty())) { | 
 |       if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base, | 
 |                                          per_solve_options.dump_format_type, | 
 |                                          jacobian, | 
 |                                          solve_options.D, | 
 |                                          residuals, | 
 |                                          gauss_newton_step_.data(), | 
 |                                          0)) { | 
 |         LOG(ERROR) << "Unable to dump trust region problem." | 
 |                    << " Filename base: " | 
 |                    << per_solve_options.dump_filename_base; | 
 |       } | 
 |     } | 
 |  | 
 |     if (linear_solver_summary.termination_type == | 
 |         LinearSolverTerminationType::FATAL_ERROR) { | 
 |       return linear_solver_summary; | 
 |     } | 
 |  | 
 |     if (linear_solver_summary.termination_type == | 
 |             LinearSolverTerminationType::FAILURE || | 
 |         !IsArrayValid(n, gauss_newton_step_.data())) { | 
 |       mu_ *= mu_increase_factor_; | 
 |       VLOG(2) << "Increasing mu " << mu_; | 
 |       linear_solver_summary.termination_type = | 
 |           LinearSolverTerminationType::FAILURE; | 
 |       continue; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   if (linear_solver_summary.termination_type != | 
 |       LinearSolverTerminationType::FAILURE) { | 
 |     // The scaled Gauss-Newton step is D * GN: | 
 |     // | 
 |     //     - (D^-1 J^T J D^-1)^-1 (D^-1 g) | 
 |     //   = - D (J^T J)^-1 D D^-1 g | 
 |     //   = D -(J^T J)^-1 g | 
 |     // | 
 |     gauss_newton_step_.array() *= -diagonal_.array(); | 
 |   } | 
 |  | 
 |   return linear_solver_summary; | 
 | } | 
 |  | 
 | void DoglegStrategy::StepAccepted(double step_quality) { | 
 |   CHECK_GT(step_quality, 0.0); | 
 |  | 
 |   if (step_quality < decrease_threshold_) { | 
 |     radius_ *= 0.5; | 
 |   } | 
 |  | 
 |   if (step_quality > increase_threshold_) { | 
 |     radius_ = std::max(radius_, 3.0 * dogleg_step_norm_); | 
 |   } | 
 |  | 
 |   // Reduce the regularization multiplier, in the hope that whatever | 
 |   // was causing the rank deficiency has gone away and we can return | 
 |   // to doing a pure Gauss-Newton solve. | 
 |   mu_ = std::max(min_mu_, 2.0 * mu_ / mu_increase_factor_); | 
 |   reuse_ = false; | 
 | } | 
 |  | 
 | void DoglegStrategy::StepRejected(double step_quality) { | 
 |   radius_ *= 0.5; | 
 |   reuse_ = true; | 
 | } | 
 |  | 
 | void DoglegStrategy::StepIsInvalid() { | 
 |   mu_ *= mu_increase_factor_; | 
 |   reuse_ = false; | 
 | } | 
 |  | 
 | double DoglegStrategy::Radius() const { return radius_; } | 
 |  | 
 | bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) { | 
 |   // Compute an orthogonal basis for the subspace using QR decomposition. | 
 |   Matrix basis_vectors(jacobian->num_cols(), 2); | 
 |   basis_vectors.col(0) = gradient_; | 
 |   basis_vectors.col(1) = gauss_newton_step_; | 
 |   Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors); | 
 |  | 
 |   switch (basis_qr.rank()) { | 
 |     case 0: | 
 |       // This should never happen, as it implies that both the gradient | 
 |       // and the Gauss-Newton step are zero. In this case, the minimizer should | 
 |       // have stopped due to the gradient being too small. | 
 |       LOG(ERROR) << "Rank of subspace basis is 0. " | 
 |                  << "This means that the gradient at the current iterate is " | 
 |                  << "zero but the optimization has not been terminated. " | 
 |                  << "You may have found a bug in Ceres."; | 
 |       return false; | 
 |  | 
 |     case 1: | 
 |       // Gradient and Gauss-Newton step coincide, so we lie on one of the | 
 |       // major axes of the quadratic problem. In this case, we simply move | 
 |       // along the gradient until we reach the trust region boundary. | 
 |       subspace_is_one_dimensional_ = true; | 
 |       return true; | 
 |  | 
 |     case 2: | 
 |       subspace_is_one_dimensional_ = false; | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(ERROR) << "Rank of the subspace basis matrix is reported to be " | 
 |                  << "greater than 2. As the matrix contains only two " | 
 |                  << "columns this cannot be true and is indicative of " | 
 |                  << "a bug."; | 
 |       return false; | 
 |   } | 
 |  | 
 |   // The subspace is two-dimensional, so compute the subspace model. | 
 |   // Given the basis U, this is | 
 |   // | 
 |   //   subspace_g_ = g_scaled^T U | 
 |   // | 
 |   // and | 
 |   // | 
 |   //   subspace_B_ = U^T (J_scaled^T J_scaled) U | 
 |   // | 
 |   // As J_scaled = J * D^-1, the latter becomes | 
 |   // | 
 |   //   subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U)) | 
 |   //               = (J (D^-1 U))^T (J (D^-1 U)) | 
 |  | 
 |   subspace_basis_ = | 
 |       basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2); | 
 |  | 
 |   subspace_g_ = subspace_basis_.transpose() * gradient_; | 
 |  | 
 |   Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor> Jb( | 
 |       2, jacobian->num_rows()); | 
 |   Jb.setZero(); | 
 |  | 
 |   Vector tmp; | 
 |   tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix(); | 
 |   jacobian->RightMultiplyAndAccumulate(tmp.data(), Jb.row(0).data()); | 
 |   tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix(); | 
 |   jacobian->RightMultiplyAndAccumulate(tmp.data(), Jb.row(1).data()); | 
 |  | 
 |   subspace_B_ = Jb * Jb.transpose(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |