| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
 | // | 
 |  | 
 | #ifndef CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ | 
 | #define CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ | 
 |  | 
 | #include "ceres/internal/config.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | #include <memory> | 
 |  | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/cuda_block_structure.h" | 
 | #include "ceres/cuda_buffer.h" | 
 | #include "ceres/cuda_sparse_matrix.h" | 
 | #include "ceres/cuda_streamed_buffer.h" | 
 |  | 
 | namespace ceres::internal { | 
 | // We use cuSPARSE library for SpMV operations. However, it does not support | 
 | // block-sparse format with varying size of the blocks. Thus, we perform the | 
 | // following operations in order to compute products of block-sparse matrices | 
 | // and dense vectors on gpu: | 
 | //  - Once per block-sparse structure update: | 
 | //    - Compute CRS structure from block-sparse structure and check if values of | 
 | //    block-sparse matrix would have the same order as values of CRS matrix | 
 | //  - Once per block-sparse values update: | 
 | //    - Update values in CRS matrix with values of block-sparse matrix | 
 | // | 
 | // Only block-sparse matrices with sequential order of cells are supported. | 
 | // | 
 | // UpdateValues method updates values: | 
 | //  - In a single host-to-device copy for matrices with CRS-compatible value | 
 | //  layout | 
 | //  - Simultaneously transferring and permuting values using CudaStreamedBuffer | 
 | //  otherwise | 
 | class CERES_NO_EXPORT CudaBlockSparseCRSView { | 
 |  public: | 
 |   // Initializes internal CRS matrix using structure and values of block-sparse | 
 |   // matrix For block-sparse matrices that have value layout different from CRS | 
 |   // block-sparse structure will be stored/ | 
 |   CudaBlockSparseCRSView(const BlockSparseMatrix& bsm, ContextImpl* context); | 
 |  | 
 |   const CudaSparseMatrix* crs_matrix() const { return crs_matrix_.get(); } | 
 |   CudaSparseMatrix* mutable_crs_matrix() { return crs_matrix_.get(); } | 
 |  | 
 |   // Update values of crs_matrix_ using values of block-sparse matrix. | 
 |   // Assumes that bsm has the same block-sparse structure as matrix that was | 
 |   // used for construction. | 
 |   void UpdateValues(const BlockSparseMatrix& bsm); | 
 |  | 
 |   // Returns true if block-sparse matrix had CRS-compatible value layout | 
 |   bool IsCrsCompatible() const { return is_crs_compatible_; } | 
 |  | 
 |   void LeftMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const { | 
 |     crs_matrix()->LeftMultiplyAndAccumulate(x, y); | 
 |   } | 
 |  | 
 |   void RightMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const { | 
 |     crs_matrix()->RightMultiplyAndAccumulate(x, y); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Value permutation kernel performs a single element-wise operation per | 
 |   // thread, thus performing permutation in blocks of 8 megabytes of | 
 |   // block-sparse  values seems reasonable | 
 |   static constexpr int kMaxTemporaryArraySize = 1 * 1024 * 1024; | 
 |   std::unique_ptr<CudaSparseMatrix> crs_matrix_; | 
 |   // Only created if block-sparse matrix has non-CRS value layout | 
 |   std::unique_ptr<CudaStreamedBuffer<double>> streamed_buffer_; | 
 |   // Only stored if block-sparse matrix has non-CRS value layout | 
 |   std::unique_ptr<CudaBlockSparseStructure> block_structure_; | 
 |   bool is_crs_compatible_; | 
 |   ContextImpl* context_; | 
 | }; | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_NO_CUDA | 
 | #endif  // CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_ |