| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) | 
 |  | 
 | #include "ceres/cuda_block_structure.h" | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | namespace ceres::internal { | 
 | namespace { | 
 | // Dimension of a sorted array of blocks | 
 | inline int Dimension(const std::vector<Block>& blocks) { | 
 |   if (blocks.empty()) { | 
 |     return 0; | 
 |   } | 
 |   const auto& last = blocks.back(); | 
 |   return last.size + last.position; | 
 | } | 
 | }  // namespace | 
 | CudaBlockSparseStructure::CudaBlockSparseStructure( | 
 |     const CompressedRowBlockStructure& block_structure, ContextImpl* context) | 
 |     : CudaBlockSparseStructure(block_structure, 0, context) {} | 
 |  | 
 | CudaBlockSparseStructure::CudaBlockSparseStructure( | 
 |     const CompressedRowBlockStructure& block_structure, | 
 |     const int num_col_blocks_e, | 
 |     ContextImpl* context) | 
 |     : first_cell_in_row_block_(context), | 
 |       value_offset_row_block_f_(context), | 
 |       cells_(context), | 
 |       row_blocks_(context), | 
 |       col_blocks_(context) { | 
 |   // Row blocks extracted from CompressedRowBlockStructure::rows | 
 |   std::vector<Block> row_blocks; | 
 |   // Column blocks can be reused as-is | 
 |   const auto& col_blocks = block_structure.cols; | 
 |  | 
 |   // Row block offset is an index of the first cell corresponding to row block | 
 |   std::vector<int> first_cell_in_row_block; | 
 |   // Offset of the first value in the first non-empty row-block of F sub-matrix | 
 |   std::vector<int> value_offset_row_block_f; | 
 |   // Flat array of all cells from all row-blocks | 
 |   std::vector<Cell> cells; | 
 |  | 
 |   int f_values_offset = -1; | 
 |   num_nonzeros_e_ = 0; | 
 |   is_crs_compatible_ = true; | 
 |   num_row_blocks_ = block_structure.rows.size(); | 
 |   num_col_blocks_ = col_blocks.size(); | 
 |  | 
 |   row_blocks.reserve(num_row_blocks_); | 
 |   first_cell_in_row_block.reserve(num_row_blocks_ + 1); | 
 |   value_offset_row_block_f.reserve(num_row_blocks_ + 1); | 
 |   num_nonzeros_ = 0; | 
 |   // Block-sparse matrices arising from block-jacobian writer are expected to | 
 |   // have sequential layout (for partitioned matrices - it is expected that both | 
 |   // E and F sub-matrices have sequential layout). | 
 |   bool sequential_layout = true; | 
 |   int row_block_id = 0; | 
 |   num_row_blocks_e_ = 0; | 
 |   for (; row_block_id < num_row_blocks_; ++row_block_id) { | 
 |     const auto& r = block_structure.rows[row_block_id]; | 
 |     const int row_block_size = r.block.size; | 
 |     const int num_cells = r.cells.size(); | 
 |  | 
 |     if (num_col_blocks_e == 0 || r.cells.size() == 0 || | 
 |         r.cells[0].block_id >= num_col_blocks_e) { | 
 |       break; | 
 |     } | 
 |     num_row_blocks_e_ = row_block_id + 1; | 
 |     // In E sub-matrix there is exactly a single E cell in the row | 
 |     // since E cells are stored separately from F cells, crs-compatiblity of | 
 |     // F sub-matrix only breaks if there are more than 2 cells in row (that | 
 |     // is, more than 1 cell in F sub-matrix) | 
 |     if (num_cells > 2 && row_block_size > 1) { | 
 |       is_crs_compatible_ = false; | 
 |     } | 
 |     row_blocks.emplace_back(r.block); | 
 |     first_cell_in_row_block.push_back(cells.size()); | 
 |  | 
 |     for (int cell_id = 0; cell_id < num_cells; ++cell_id) { | 
 |       const auto& c = r.cells[cell_id]; | 
 |       const int col_block_size = col_blocks[c.block_id].size; | 
 |       const int cell_size = col_block_size * row_block_size; | 
 |       cells.push_back(c); | 
 |       if (cell_id == 0) { | 
 |         DCHECK(c.position == num_nonzeros_e_); | 
 |         num_nonzeros_e_ += cell_size; | 
 |       } else { | 
 |         if (f_values_offset == -1) { | 
 |           num_nonzeros_ = c.position; | 
 |           f_values_offset = c.position; | 
 |         } | 
 |         sequential_layout &= c.position == num_nonzeros_; | 
 |         num_nonzeros_ += cell_size; | 
 |         if (cell_id == 1) { | 
 |           // Correct value_offset_row_block_f for empty row-blocks of F | 
 |           // preceding this one | 
 |           for (auto it = value_offset_row_block_f.rbegin(); | 
 |                it != value_offset_row_block_f.rend(); | 
 |                ++it) { | 
 |             if (*it != -1) break; | 
 |             *it = c.position; | 
 |           } | 
 |           value_offset_row_block_f.push_back(c.position); | 
 |         } | 
 |       } | 
 |     } | 
 |     if (num_cells == 1) { | 
 |       value_offset_row_block_f.push_back(-1); | 
 |     } | 
 |   } | 
 |   for (; row_block_id < num_row_blocks_; ++row_block_id) { | 
 |     const auto& r = block_structure.rows[row_block_id]; | 
 |     const int row_block_size = r.block.size; | 
 |     const int num_cells = r.cells.size(); | 
 |     // After num_row_blocks_e_ row-blocks, there should be no cells in E | 
 |     // sub-matrix. Thus crs-compatibility of F sub-matrix breaks if there are | 
 |     // more than one cells in the row-block | 
 |     if (num_cells > 1 && row_block_size > 1) { | 
 |       is_crs_compatible_ = false; | 
 |     } | 
 |     row_blocks.emplace_back(r.block); | 
 |     first_cell_in_row_block.push_back(cells.size()); | 
 |  | 
 |     if (r.cells.empty()) { | 
 |       value_offset_row_block_f.push_back(-1); | 
 |     } else { | 
 |       for (auto it = value_offset_row_block_f.rbegin(); | 
 |            it != value_offset_row_block_f.rend(); | 
 |            --it) { | 
 |         if (*it != -1) break; | 
 |         *it = cells[0].position; | 
 |       } | 
 |       value_offset_row_block_f.push_back(r.cells[0].position); | 
 |     } | 
 |     for (const auto& c : r.cells) { | 
 |       const int col_block_size = col_blocks[c.block_id].size; | 
 |       const int cell_size = col_block_size * row_block_size; | 
 |       cells.push_back(c); | 
 |       DCHECK(c.block_id >= num_col_blocks_e); | 
 |       if (f_values_offset == -1) { | 
 |         num_nonzeros_ = c.position; | 
 |         f_values_offset = c.position; | 
 |       } | 
 |       sequential_layout &= c.position == num_nonzeros_; | 
 |       num_nonzeros_ += cell_size; | 
 |     } | 
 |   } | 
 |  | 
 |   if (f_values_offset == -1) { | 
 |     f_values_offset = num_nonzeros_e_; | 
 |     num_nonzeros_ = num_nonzeros_e_; | 
 |   } | 
 |   // Fill non-zero offsets for the last rows of F submatrix | 
 |   for (auto it = value_offset_row_block_f.rbegin(); | 
 |        it != value_offset_row_block_f.rend(); | 
 |        ++it) { | 
 |     if (*it != -1) break; | 
 |     *it = num_nonzeros_; | 
 |   } | 
 |   value_offset_row_block_f.push_back(num_nonzeros_); | 
 |   CHECK_EQ(num_nonzeros_e_, f_values_offset); | 
 |   first_cell_in_row_block.push_back(cells.size()); | 
 |   num_cells_ = cells.size(); | 
 |  | 
 |   num_rows_ = Dimension(row_blocks); | 
 |   num_cols_ = Dimension(col_blocks); | 
 |  | 
 |   CHECK(sequential_layout); | 
 |  | 
 |   if (VLOG_IS_ON(3)) { | 
 |     const size_t first_cell_in_row_block_size = | 
 |         first_cell_in_row_block.size() * sizeof(int); | 
 |     const size_t cells_size = cells.size() * sizeof(Cell); | 
 |     const size_t row_blocks_size = row_blocks.size() * sizeof(Block); | 
 |     const size_t col_blocks_size = col_blocks.size() * sizeof(Block); | 
 |     const size_t total_size = first_cell_in_row_block_size + cells_size + | 
 |                               col_blocks_size + row_blocks_size; | 
 |     const double ratio = | 
 |         (100. * total_size) / (num_nonzeros_ * (sizeof(int) + sizeof(double)) + | 
 |                                num_rows_ * sizeof(int)); | 
 |     VLOG(3) << "\nCudaBlockSparseStructure:\n" | 
 |                "\tRow block offsets: " | 
 |             << first_cell_in_row_block_size | 
 |             << " bytes\n" | 
 |                "\tColumn blocks: " | 
 |             << col_blocks_size | 
 |             << " bytes\n" | 
 |                "\tRow blocks: " | 
 |             << row_blocks_size | 
 |             << " bytes\n" | 
 |                "\tCells: " | 
 |             << cells_size << " bytes\n\tTotal: " << total_size | 
 |             << " bytes of GPU memory (" << ratio << "% of CRS matrix size)"; | 
 |   } | 
 |  | 
 |   first_cell_in_row_block_.CopyFromCpuVector(first_cell_in_row_block); | 
 |   cells_.CopyFromCpuVector(cells); | 
 |   row_blocks_.CopyFromCpuVector(row_blocks); | 
 |   col_blocks_.CopyFromCpuVector(col_blocks); | 
 |   if (num_col_blocks_e || num_row_blocks_e_) { | 
 |     value_offset_row_block_f_.CopyFromCpuVector(value_offset_row_block_f); | 
 |   } | 
 | } | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_NO_CUDA |