| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #include <algorithm> | 
 |  | 
 | #include "benchmark/benchmark.h" | 
 | #include "ceres/eigen_vector_ops.h" | 
 | #include "ceres/parallel_for.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | const int kVectorSize = 64 * 1024 * 1024 / sizeof(double); | 
 |  | 
 | static void SetZero(benchmark::State& state) { | 
 |   Vector x = Vector::Random(kVectorSize); | 
 |   for (auto _ : state) { | 
 |     x.setZero(); | 
 |   } | 
 |   CHECK_EQ(x.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(SetZero); | 
 |  | 
 | static void SetZeroParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   Vector x = Vector::Random(kVectorSize); | 
 |   for (auto _ : state) { | 
 |     ParallelSetZero(&context, num_threads, x); | 
 |   } | 
 |   CHECK_EQ(x.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(SetZeroParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void Negate(benchmark::State& state) { | 
 |   Vector x = Vector::Random(kVectorSize).normalized(); | 
 |   const Vector x_init = x; | 
 |  | 
 |   for (auto _ : state) { | 
 |     x = -x; | 
 |   } | 
 |   CHECK((x - x_init).squaredNorm() == 0. || (x + x_init).squaredNorm() == 0); | 
 | } | 
 | BENCHMARK(Negate); | 
 |  | 
 | static void NegateParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   Vector x = Vector::Random(kVectorSize).normalized(); | 
 |   const Vector x_init = x; | 
 |  | 
 |   for (auto _ : state) { | 
 |     ParallelAssign(&context, num_threads, x, -x); | 
 |   } | 
 |   CHECK((x - x_init).squaredNorm() == 0. || (x + x_init).squaredNorm() == 0); | 
 | } | 
 | BENCHMARK(NegateParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void Assign(benchmark::State& state) { | 
 |   Vector x = Vector::Random(kVectorSize); | 
 |   Vector y = Vector(kVectorSize); | 
 |   for (auto _ : state) { | 
 |     y.block(0, 0, kVectorSize, 1) = x.block(0, 0, kVectorSize, 1); | 
 |   } | 
 |   CHECK_EQ((y - x).squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(Assign); | 
 |  | 
 | static void AssignParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   Vector x = Vector::Random(kVectorSize); | 
 |   Vector y = Vector(kVectorSize); | 
 |  | 
 |   for (auto _ : state) { | 
 |     ParallelAssign(&context, num_threads, y, x); | 
 |   } | 
 |   CHECK_EQ((y - x).squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(AssignParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void D2X(benchmark::State& state) { | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |   const Vector D = Vector::Random(kVectorSize); | 
 |   Vector y = Vector::Zero(kVectorSize); | 
 |   for (auto _ : state) { | 
 |     y = D.array().square() * x.array(); | 
 |   } | 
 |   CHECK_GT(y.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(D2X); | 
 |  | 
 | static void D2XParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |   const Vector D = Vector::Random(kVectorSize); | 
 |   Vector y = Vector(kVectorSize); | 
 |  | 
 |   for (auto _ : state) { | 
 |     ParallelAssign(&context, num_threads, y, D.array().square() * x.array()); | 
 |   } | 
 |   CHECK_GT(y.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(D2XParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void DivideSqrt(benchmark::State& state) { | 
 |   Vector diagonal = Vector::Random(kVectorSize).array().abs(); | 
 |   const double radius = 0.5; | 
 |   for (auto _ : state) { | 
 |     diagonal = (diagonal / radius).array().sqrt(); | 
 |   } | 
 |   CHECK_GT(diagonal.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(DivideSqrt); | 
 |  | 
 | static void DivideSqrtParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   Vector diagonal = Vector::Random(kVectorSize).array().abs(); | 
 |   const double radius = 0.5; | 
 |   for (auto _ : state) { | 
 |     ParallelAssign( | 
 |         &context, num_threads, diagonal, (diagonal / radius).cwiseSqrt()); | 
 |   } | 
 |   CHECK_GT(diagonal.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(DivideSqrtParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void Clamp(benchmark::State& state) { | 
 |   Vector diagonal = Vector::Random(kVectorSize); | 
 |   const double min = -0.5; | 
 |   const double max = 0.5; | 
 |   for (auto _ : state) { | 
 |     for (int i = 0; i < kVectorSize; ++i) { | 
 |       diagonal[i] = std::min(std::max(diagonal[i], min), max); | 
 |     } | 
 |   } | 
 |   CHECK_LE(diagonal.maxCoeff(), 0.5); | 
 |   CHECK_GE(diagonal.minCoeff(), -0.5); | 
 | } | 
 | BENCHMARK(Clamp); | 
 |  | 
 | static void ClampParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   Vector diagonal = Vector::Random(kVectorSize); | 
 |   const double min = -0.5; | 
 |   const double max = 0.5; | 
 |   for (auto _ : state) { | 
 |     ParallelAssign( | 
 |         &context, num_threads, diagonal, diagonal.array().max(min).min(max)); | 
 |   } | 
 |   CHECK_LE(diagonal.maxCoeff(), 0.5); | 
 |   CHECK_GE(diagonal.minCoeff(), -0.5); | 
 | } | 
 | BENCHMARK(ClampParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void Norm(benchmark::State& state) { | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |  | 
 |   double total = 0.; | 
 |   for (auto _ : state) { | 
 |     total += x.norm(); | 
 |   } | 
 |   CHECK_GT(total, 0.); | 
 | } | 
 | BENCHMARK(Norm); | 
 |  | 
 | static void NormParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |  | 
 |   double total = 0.; | 
 |   for (auto _ : state) { | 
 |     total += Norm(x, &context, num_threads); | 
 |   } | 
 |   CHECK_GT(total, 0.); | 
 | } | 
 | BENCHMARK(NormParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void Dot(benchmark::State& state) { | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |   const Vector y = Vector::Random(kVectorSize); | 
 |  | 
 |   double total = 0.; | 
 |   for (auto _ : state) { | 
 |     total += x.dot(y); | 
 |   } | 
 |   CHECK_NE(total, 0.); | 
 | } | 
 | BENCHMARK(Dot); | 
 |  | 
 | static void DotParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |   const Vector y = Vector::Random(kVectorSize); | 
 |  | 
 |   double total = 0.; | 
 |   for (auto _ : state) { | 
 |     total += Dot(x, y, &context, num_threads); | 
 |   } | 
 |   CHECK_NE(total, 0.); | 
 | } | 
 | BENCHMARK(DotParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | static void Axpby(benchmark::State& state) { | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |   const Vector y = Vector::Random(kVectorSize); | 
 |   Vector z = Vector::Zero(kVectorSize); | 
 |   const double a = 3.1415; | 
 |   const double b = 1.2345; | 
 |  | 
 |   for (auto _ : state) { | 
 |     z = a * x + b * y; | 
 |   } | 
 |   CHECK_GT(z.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(Axpby); | 
 |  | 
 | static void AxpbyParallel(benchmark::State& state) { | 
 |   const int num_threads = static_cast<int>(state.range(0)); | 
 |   ContextImpl context; | 
 |   context.EnsureMinimumThreads(num_threads); | 
 |  | 
 |   const Vector x = Vector::Random(kVectorSize); | 
 |   const Vector y = Vector::Random(kVectorSize); | 
 |   Vector z = Vector::Zero(kVectorSize); | 
 |   const double a = 3.1415; | 
 |   const double b = 1.2345; | 
 |  | 
 |   for (auto _ : state) { | 
 |     Axpby(a, x, b, y, z, &context, num_threads); | 
 |   } | 
 |   CHECK_GT(z.squaredNorm(), 0.); | 
 | } | 
 | BENCHMARK(AxpbyParallel)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16); | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | BENCHMARK_MAIN(); |