| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) | 
 |  | 
 | #include <string> | 
 |  | 
 | #include "ceres/dense_qr.h" | 
 | #include "ceres/internal/eigen.h" | 
 |  | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | #ifndef CERES_NO_CUDA | 
 |  | 
 | TEST(CUDADenseQR, InvalidOptionOnCreate) { | 
 |   LinearSolver::Options options; | 
 |   auto dense_cuda_solver = CUDADenseQR::Create(options); | 
 |   EXPECT_EQ(dense_cuda_solver, nullptr); | 
 | } | 
 |  | 
 | // Tests the CUDA QR solver with a simple 4x4 matrix. | 
 | TEST(CUDADenseQR, QR4x4Matrix) { | 
 |   Eigen::Matrix4d A; | 
 |   A <<  4,  12, -16, 0, | 
 |        12,  37, -43, 0, | 
 |       -16, -43,  98, 0, | 
 |         0,   0,   0, 1; | 
 |   const Eigen::Vector4d b = Eigen::Vector4d::Ones(); | 
 |   LinearSolver::Options options; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   options.dense_linear_algebra_library_type = CUDA; | 
 |   auto dense_cuda_solver = CUDADenseQR::Create(options); | 
 |   ASSERT_NE(dense_cuda_solver, nullptr); | 
 |   std::string error_string; | 
 |   ASSERT_EQ(dense_cuda_solver->Factorize(A.rows(), | 
 |                                          A.cols(), | 
 |                                          A.data(), | 
 |                                          &error_string), | 
 |             LinearSolverTerminationType::LINEAR_SOLVER_SUCCESS); | 
 |   Eigen::Vector4d x = Eigen::Vector4d::Zero(); | 
 |   ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string), | 
 |             LinearSolverTerminationType::LINEAR_SOLVER_SUCCESS); | 
 |   // Empirically observed accuracy of cuSolverDN's QR solver. | 
 |   const double kEpsilon = 1e-11; | 
 |   EXPECT_NEAR(x(0), 113.75 / 3.0, kEpsilon); | 
 |   EXPECT_NEAR(x(1), -31.0 / 3.0, kEpsilon); | 
 |   EXPECT_NEAR(x(2), 5.0 / 3.0, kEpsilon); | 
 |   EXPECT_NEAR(x(3), 1.0000, kEpsilon); | 
 | } | 
 |  | 
 | // Tests the CUDA QR solver with a simple 4x4 matrix. | 
 | TEST(CUDADenseQR, QR4x2Matrix) { | 
 |   Eigen::Matrix<double, 4, 2> A; | 
 |   A <<  4,  12, | 
 |        12,  37, | 
 |       -16, -43, | 
 |         0,   0; | 
 |   const std::vector<double> b(4, 1.0); | 
 |   LinearSolver::Options options; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   options.dense_linear_algebra_library_type = CUDA; | 
 |   auto dense_cuda_solver = CUDADenseQR::Create(options); | 
 |   ASSERT_NE(dense_cuda_solver, nullptr); | 
 |   std::string error_string; | 
 |   ASSERT_EQ(dense_cuda_solver->Factorize(A.rows(), | 
 |                                          A.cols(), | 
 |                                          A.data(), | 
 |                                          &error_string), | 
 |             LinearSolverTerminationType::LINEAR_SOLVER_SUCCESS); | 
 |   std::vector<double> x(2, 0); | 
 |   ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string), | 
 |             LinearSolverTerminationType::LINEAR_SOLVER_SUCCESS); | 
 |   // Empirically observed accuracy of cuSolverDN's QR solver. | 
 |   const double kEpsilon = 1e-11; | 
 |   // Solution values computed with Octave. | 
 |   EXPECT_NEAR(x[0], -1.143410852713177, kEpsilon); | 
 |   EXPECT_NEAR(x[1], 0.4031007751937981, kEpsilon); | 
 | } | 
 |  | 
 | TEST(CUDADenseQR, MustFactorizeBeforeSolve) { | 
 |   const Eigen::Vector3d b = Eigen::Vector3d::Ones(); | 
 |   LinearSolver::Options options; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   options.dense_linear_algebra_library_type = CUDA; | 
 |   auto dense_cuda_solver = CUDADenseQR::Create(options); | 
 |   ASSERT_NE(dense_cuda_solver, nullptr); | 
 |   std::string error_string; | 
 |   ASSERT_EQ(dense_cuda_solver->Solve(b.data(), nullptr, &error_string), | 
 |             LinearSolverTerminationType::LINEAR_SOLVER_FATAL_ERROR); | 
 | } | 
 |  | 
 | TEST(CUDADenseQR, Randomized1600x100Tests) { | 
 |   const int kNumRows = 1600; | 
 |   const int kNumCols = 100; | 
 |   using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>; | 
 |   using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>; | 
 |   using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>; | 
 |  | 
 |   LinearSolver::Options options; | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   options.dense_linear_algebra_library_type = ceres::CUDA; | 
 |   std::unique_ptr<DenseQR> dense_qr = CUDADenseQR::Create(options); | 
 |  | 
 |   const int kNumTrials = 100; | 
 |   const int kMinNumCols = 1; | 
 |   const int kMaxNumCols = 10; | 
 |   const int kMinRowsFactor = 1; | 
 |   const int kMaxRowsFactor = 3; | 
 |   for (int i = 0; i < kNumTrials; ++i) { | 
 |     LhsType lhs = LhsType::Random(kNumRows, kNumCols); | 
 |     SolutionType x_expected = SolutionType::Random(kNumCols); | 
 |     RhsType rhs = lhs * x_expected; | 
 |     SolutionType x_computed = SolutionType::Zero(kNumCols); | 
 |     // Sanity check the random matrix sizes. | 
 |     EXPECT_EQ(lhs.rows(), kNumRows); | 
 |     EXPECT_EQ(lhs.cols(), kNumCols); | 
 |     EXPECT_EQ(rhs.rows(), kNumRows); | 
 |     EXPECT_EQ(rhs.cols(), 1); | 
 |     EXPECT_EQ(x_expected.rows(), kNumCols); | 
 |     EXPECT_EQ(x_expected.cols(), 1); | 
 |     EXPECT_EQ(x_computed.rows(), kNumCols); | 
 |     EXPECT_EQ(x_computed.cols(), 1); | 
 |     LinearSolver::Summary summary; | 
 |     summary.termination_type = dense_qr->FactorAndSolve(kNumRows, | 
 |                                                         kNumCols, | 
 |                                                         lhs.data(), | 
 |                                                         rhs.data(), | 
 |                                                         x_computed.data(), | 
 |                                                         &summary.message); | 
 |     ASSERT_EQ(summary.termination_type, LINEAR_SOLVER_SUCCESS); | 
 |     ASSERT_NEAR((x_computed - x_expected).norm() / x_expected.norm(), | 
 |                 0.0, | 
 |                 std::numeric_limits<double>::epsilon() * 400); | 
 |   } | 
 | } | 
 | #endif  // CERES_NO_CUDA | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |