|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/trust_region_preprocessor.h" | 
|  |  | 
|  | #include <array> | 
|  | #include <map> | 
|  |  | 
|  | #include "ceres/ordered_groups.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/solver.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | TEST(TrustRegionPreprocessor, ZeroProblem) { | 
|  | ProblemImpl problem; | 
|  | Solver::Options options; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp)); | 
|  | } | 
|  |  | 
|  | TEST(TrustRegionPreprocessor, ProblemWithInvalidParameterBlock) { | 
|  | ProblemImpl problem; | 
|  | double x = std::numeric_limits<double>::quiet_NaN(); | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | Solver::Options options; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); | 
|  | } | 
|  |  | 
|  | TEST(TrustRegionPreprocessor, ParameterBlockBoundsAreInvalid) { | 
|  | ProblemImpl problem; | 
|  | double x = 1.0; | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.SetParameterUpperBound(&x, 0, 1.0); | 
|  | problem.SetParameterLowerBound(&x, 0, 2.0); | 
|  | Solver::Options options; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); | 
|  | } | 
|  |  | 
|  | TEST(TrustRegionPreprocessor, ParamterBlockIsInfeasible) { | 
|  | ProblemImpl problem; | 
|  | double x = 3.0; | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | problem.SetParameterUpperBound(&x, 0, 1.0); | 
|  | problem.SetParameterLowerBound(&x, 0, 2.0); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  | Solver::Options options; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); | 
|  | } | 
|  |  | 
|  | class FailingCostFunction : public SizedCostFunction<1, 1> { | 
|  | public: | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const override { | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(TrustRegionPreprocessor, RemoveParameterBlocksFailed) { | 
|  | ProblemImpl problem; | 
|  | double x = 3.0; | 
|  | problem.AddResidualBlock(new FailingCostFunction, nullptr, &x); | 
|  | problem.SetParameterBlockConstant(&x); | 
|  | Solver::Options options; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp)); | 
|  | } | 
|  |  | 
|  | TEST(TrustRegionPreprocessor, RemoveParameterBlocksSucceeds) { | 
|  | ProblemImpl problem; | 
|  | double x = 3.0; | 
|  | problem.AddParameterBlock(&x, 1); | 
|  | Solver::Options options; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp)); | 
|  | } | 
|  |  | 
|  | template <int kNumResiduals, int... Ns> | 
|  | class DummyCostFunction : public SizedCostFunction<kNumResiduals, Ns...> { | 
|  | public: | 
|  | bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const override { | 
|  | for (int i = 0; i < kNumResiduals; ++i) { | 
|  | residuals[i] = kNumResiduals * kNumResiduals + i; | 
|  | } | 
|  |  | 
|  | if (jacobians == nullptr) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::array<int, sizeof...(Ns)> N{Ns...}; | 
|  | for (size_t i = 0; i < N.size(); ++i) { | 
|  | if (jacobians[i] != nullptr) { | 
|  | MatrixRef j(jacobians[i], kNumResiduals, N[i]); | 
|  | j.setOnes(); | 
|  | j *= kNumResiduals * N[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class LinearSolverAndEvaluatorCreationTest : public ::testing::Test { | 
|  | public: | 
|  | void SetUp() final { | 
|  | x_ = 1.0; | 
|  | y_ = 1.0; | 
|  | z_ = 1.0; | 
|  | problem_.AddResidualBlock( | 
|  | new DummyCostFunction<1, 1, 1>, nullptr, &x_, &y_); | 
|  | problem_.AddResidualBlock( | 
|  | new DummyCostFunction<1, 1, 1>, nullptr, &y_, &z_); | 
|  | } | 
|  |  | 
|  | void PreprocessForGivenLinearSolverAndVerify( | 
|  | const LinearSolverType linear_solver_type) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = linear_solver_type; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | EXPECT_EQ(pp.options.linear_solver_type, linear_solver_type); | 
|  | EXPECT_EQ(pp.linear_solver_options.type, linear_solver_type); | 
|  | EXPECT_EQ(pp.evaluator_options.linear_solver_type, linear_solver_type); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | ProblemImpl problem_; | 
|  | double x_; | 
|  | double y_; | 
|  | double z_; | 
|  | }; | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, DenseQR) { | 
|  | PreprocessForGivenLinearSolverAndVerify(DENSE_QR); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, DenseNormalCholesky) { | 
|  | PreprocessForGivenLinearSolverAndVerify(DENSE_NORMAL_CHOLESKY); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, DenseSchur) { | 
|  | PreprocessForGivenLinearSolverAndVerify(DENSE_SCHUR); | 
|  | } | 
|  |  | 
|  | #if !defined(CERES_NO_SPARSE) | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, SparseNormalCholesky) { | 
|  | PreprocessForGivenLinearSolverAndVerify(SPARSE_NORMAL_CHOLESKY); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(CERES_NO_SPARSE) | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, SparseSchur) { | 
|  | PreprocessForGivenLinearSolverAndVerify(SPARSE_SCHUR); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, CGNR) { | 
|  | PreprocessForGivenLinearSolverAndVerify(CGNR); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, IterativeSchur) { | 
|  | PreprocessForGivenLinearSolverAndVerify(ITERATIVE_SCHUR); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, MinimizerIsAwareOfBounds) { | 
|  | problem_.SetParameterLowerBound(&x_, 0, 0.0); | 
|  | Solver::Options options; | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | EXPECT_EQ(pp.options.linear_solver_type, options.linear_solver_type); | 
|  | EXPECT_EQ(pp.linear_solver_options.type, options.linear_solver_type); | 
|  | EXPECT_EQ(pp.evaluator_options.linear_solver_type, | 
|  | options.linear_solver_type); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | EXPECT_TRUE(pp.minimizer_options.is_constrained); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithBadOrdering) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.linear_solver_ordering = std::make_shared<ParameterBlockOrdering>(); | 
|  | options.linear_solver_ordering->AddElementToGroup(&x_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&y_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&z_, 1); | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_FALSE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithGoodOrdering) { | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.linear_solver_ordering = std::make_shared<ParameterBlockOrdering>(); | 
|  | options.linear_solver_ordering->AddElementToGroup(&x_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&z_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&y_, 1); | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | EXPECT_EQ(pp.options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_EQ(pp.linear_solver_options.type, DENSE_SCHUR); | 
|  | EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, | 
|  | SchurTypeSolverWithEmptyFirstEliminationGroup) { | 
|  | problem_.SetParameterBlockConstant(&x_); | 
|  | problem_.SetParameterBlockConstant(&z_); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.linear_solver_ordering = std::make_shared<ParameterBlockOrdering>(); | 
|  | options.linear_solver_ordering->AddElementToGroup(&x_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&z_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&y_, 1); | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | EXPECT_EQ(pp.options.linear_solver_type, DENSE_QR); | 
|  | EXPECT_EQ(pp.linear_solver_options.type, DENSE_QR); | 
|  | EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_QR); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, | 
|  | SchurTypeSolverWithEmptySecondEliminationGroup) { | 
|  | problem_.SetParameterBlockConstant(&y_); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.linear_solver_type = DENSE_SCHUR; | 
|  | options.linear_solver_ordering = std::make_shared<ParameterBlockOrdering>(); | 
|  | options.linear_solver_ordering->AddElementToGroup(&x_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&z_, 0); | 
|  | options.linear_solver_ordering->AddElementToGroup(&y_, 1); | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | EXPECT_EQ(pp.options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_EQ(pp.linear_solver_options.type, DENSE_SCHUR); | 
|  | EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_SCHUR); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | } | 
|  |  | 
|  | TEST(TrustRegionPreprocessorTest, InnerIterationsWithOneParameterBlock) { | 
|  | ProblemImpl problem; | 
|  | double x = 1.0; | 
|  | problem.AddResidualBlock(new DummyCostFunction<1, 1>, nullptr, &x); | 
|  |  | 
|  | Solver::Options options; | 
|  | options.use_inner_iterations = true; | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp)); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | EXPECT_TRUE(pp.inner_iteration_minimizer.get() == nullptr); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, | 
|  | InnerIterationsWithTwoParameterBlocks) { | 
|  | Solver::Options options; | 
|  | options.use_inner_iterations = true; | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | EXPECT_TRUE(pp.inner_iteration_minimizer.get() != nullptr); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, InvalidInnerIterationsOrdering) { | 
|  | Solver::Options options; | 
|  | options.use_inner_iterations = true; | 
|  | options.inner_iteration_ordering = std::make_shared<ParameterBlockOrdering>(); | 
|  | options.inner_iteration_ordering->AddElementToGroup(&x_, 0); | 
|  | options.inner_iteration_ordering->AddElementToGroup(&z_, 0); | 
|  | options.inner_iteration_ordering->AddElementToGroup(&y_, 0); | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_FALSE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | } | 
|  |  | 
|  | TEST_F(LinearSolverAndEvaluatorCreationTest, ValidInnerIterationsOrdering) { | 
|  | Solver::Options options; | 
|  | options.use_inner_iterations = true; | 
|  | options.inner_iteration_ordering = std::make_shared<ParameterBlockOrdering>(); | 
|  | options.inner_iteration_ordering->AddElementToGroup(&x_, 0); | 
|  | options.inner_iteration_ordering->AddElementToGroup(&z_, 0); | 
|  | options.inner_iteration_ordering->AddElementToGroup(&y_, 1); | 
|  |  | 
|  | TrustRegionPreprocessor preprocessor; | 
|  | PreprocessedProblem pp; | 
|  | EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp)); | 
|  | EXPECT_TRUE(pp.linear_solver.get() != nullptr); | 
|  | EXPECT_TRUE(pp.evaluator.get() != nullptr); | 
|  | EXPECT_TRUE(pp.inner_iteration_minimizer.get() != nullptr); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |