|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // Create CostFunctions as needed by the least squares framework, with | 
|  | // Jacobians computed via automatic differentiation. For more | 
|  | // information on automatic differentation, see the wikipedia article | 
|  | // at http://en.wikipedia.org/wiki/Automatic_differentiation | 
|  | // | 
|  | // To get an auto differentiated cost function, you must define a class with a | 
|  | // templated operator() (a functor) that computes the cost function in terms of | 
|  | // the template parameter T. The autodiff framework substitutes appropriate | 
|  | // "jet" objects for T in order to compute the derivative when necessary, but | 
|  | // this is hidden, and you should write the function as if T were a scalar type | 
|  | // (e.g. a double-precision floating point number). | 
|  | // | 
|  | // The function must write the computed value in the last argument | 
|  | // (the only non-const one) and return true to indicate | 
|  | // success. Please see cost_function.h for details on how the return | 
|  | // value maybe used to impose simple constraints on the parameter | 
|  | // block. | 
|  | // | 
|  | // For example, consider a scalar error e = k - x'y, where both x and y are | 
|  | // two-dimensional column vector parameters, the prime sign indicates | 
|  | // transposition, and k is a constant. The form of this error, which is the | 
|  | // difference between a constant and an expression, is a common pattern in least | 
|  | // squares problems. For example, the value x'y might be the model expectation | 
|  | // for a series of measurements, where there is an instance of the cost function | 
|  | // for each measurement k. | 
|  | // | 
|  | // The actual cost added to the total problem is e^2, or (k - x'k)^2; however, | 
|  | // the squaring is implicitly done by the optimization framework. | 
|  | // | 
|  | // To write an auto-differentiable cost function for the above model, first | 
|  | // define the object | 
|  | // | 
|  | //   class MyScalarCostFunctor { | 
|  | //     MyScalarCostFunctor(double k): k_(k) {} | 
|  | // | 
|  | //     template <typename T> | 
|  | //     bool operator()(const T* const x , const T* const y, T* e) const { | 
|  | //       e[0] = T(k_) - x[0] * y[0] + x[1] * y[1]; | 
|  | //       return true; | 
|  | //     } | 
|  | // | 
|  | //    private: | 
|  | //     double k_; | 
|  | //   }; | 
|  | // | 
|  | // Note that in the declaration of operator() the input parameters x and y come | 
|  | // first, and are passed as const pointers to arrays of T. If there were three | 
|  | // input parameters, then the third input parameter would come after y. The | 
|  | // output is always the last parameter, and is also a pointer to an array. In | 
|  | // the example above, e is a scalar, so only e[0] is set. | 
|  | // | 
|  | // Then given this class definition, the auto differentiated cost function for | 
|  | // it can be constructed as follows. | 
|  | // | 
|  | //   CostFunction* cost_function | 
|  | //       = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>( | 
|  | //            new MyScalarCostFunctor(1.0));             ^  ^  ^ | 
|  | //                                                       |  |  | | 
|  | //                            Dimension of residual -----+  |  | | 
|  | //                            Dimension of x ---------------+  | | 
|  | //                            Dimension of y ------------------+ | 
|  | // | 
|  | // In this example, there is usually an instance for each measumerent of k. | 
|  | // | 
|  | // In the instantiation above, the template parameters following | 
|  | // "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a | 
|  | // 1-dimensional output from two arguments, both 2-dimensional. | 
|  | // | 
|  | // AutoDiffCostFunction also supports cost functions with a | 
|  | // runtime-determined number of residuals. For example: | 
|  | // | 
|  | //   CostFunction* cost_function | 
|  | //       = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>( | 
|  | //           new CostFunctorWithDynamicNumResiduals(1.0),   ^     ^  ^ | 
|  | //           runtime_number_of_residuals); <----+           |     |  | | 
|  | //                                              |           |     |  | | 
|  | //                                              |           |     |  | | 
|  | //             Actual number of residuals ------+           |     |  | | 
|  | //             Indicate dynamic number of residuals --------+     |  | | 
|  | //             Dimension of x ------------------------------------+  | | 
|  | //             Dimension of y ---------------------------------------+ | 
|  | // | 
|  | // The framework can currently accommodate cost functions of up to 10 | 
|  | // independent variables, and there is no limit on the dimensionality | 
|  | // of each of them. | 
|  | // | 
|  | // WARNING #1: Since the functor will get instantiated with different types for | 
|  | // T, you must to convert from other numeric types to T before mixing | 
|  | // computations with other variables of type T. In the example above, this is | 
|  | // seen where instead of using k_ directly, k_ is wrapped with T(k_). | 
|  | // | 
|  | // WARNING #2: A common beginner's error when first using autodiff cost | 
|  | // functions is to get the sizing wrong. In particular, there is a tendency to | 
|  | // set the template parameters to (dimension of residual, number of parameters) | 
|  | // instead of passing a dimension parameter for *every parameter*. In the | 
|  | // example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing | 
|  | // the last '2' argument. Please be careful when setting the size parameters. | 
|  |  | 
|  | #ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ | 
|  | #define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ | 
|  |  | 
|  | #include "ceres/internal/autodiff.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // A cost function which computes the derivative of the cost with respect to | 
|  | // the parameters (a.k.a. the jacobian) using an autodifferentiation framework. | 
|  | // The first template argument is the functor object, described in the header | 
|  | // comment. The second argument is the dimension of the residual (or | 
|  | // ceres::DYNAMIC to indicate it will be set at runtime), and subsequent | 
|  | // arguments describe the size of the Nth parameter, one per parameter. | 
|  | // | 
|  | // The constructors take ownership of the cost functor. | 
|  | // | 
|  | // If the number of residuals (argument kNumResiduals below) is | 
|  | // ceres::DYNAMIC, then the two-argument constructor must be used. The | 
|  | // second constructor takes a number of residuals (in addition to the | 
|  | // templated number of residuals). This allows for varying the number | 
|  | // of residuals for a single autodiff cost function at runtime. | 
|  | template <typename CostFunctor, | 
|  | int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC. | 
|  | int N0,       // Number of parameters in block 0. | 
|  | int N1 = 0,   // Number of parameters in block 1. | 
|  | int N2 = 0,   // Number of parameters in block 2. | 
|  | int N3 = 0,   // Number of parameters in block 3. | 
|  | int N4 = 0,   // Number of parameters in block 4. | 
|  | int N5 = 0,   // Number of parameters in block 5. | 
|  | int N6 = 0,   // Number of parameters in block 6. | 
|  | int N7 = 0,   // Number of parameters in block 7. | 
|  | int N8 = 0,   // Number of parameters in block 8. | 
|  | int N9 = 0>   // Number of parameters in block 9. | 
|  | class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals, | 
|  | N0, N1, N2, N3, N4, | 
|  | N5, N6, N7, N8, N9> { | 
|  | public: | 
|  | // Takes ownership of functor. Uses the template-provided value for the | 
|  | // number of residuals ("kNumResiduals"). | 
|  | explicit AutoDiffCostFunction(CostFunctor* functor) | 
|  | : functor_(functor) { | 
|  | CHECK_NE(kNumResiduals, DYNAMIC) | 
|  | << "Can't run the fixed-size constructor if the " | 
|  | << "number of residuals is set to ceres::DYNAMIC."; | 
|  | } | 
|  |  | 
|  | // Takes ownership of functor. Ignores the template-provided | 
|  | // kNumResiduals in favor of the "num_residuals" argument provided. | 
|  | // | 
|  | // This allows for having autodiff cost functions which return varying | 
|  | // numbers of residuals at runtime. | 
|  | AutoDiffCostFunction(CostFunctor* functor, int num_residuals) | 
|  | : functor_(functor) { | 
|  | CHECK_EQ(kNumResiduals, DYNAMIC) | 
|  | << "Can't run the dynamic-size constructor if the " | 
|  | << "number of residuals is not ceres::DYNAMIC."; | 
|  | SizedCostFunction<kNumResiduals, | 
|  | N0, N1, N2, N3, N4, | 
|  | N5, N6, N7, N8, N9> | 
|  | ::set_num_residuals(num_residuals); | 
|  | } | 
|  |  | 
|  | virtual ~AutoDiffCostFunction() {} | 
|  |  | 
|  | // Implementation details follow; clients of the autodiff cost function should | 
|  | // not have to examine below here. | 
|  | // | 
|  | // To handle varardic cost functions, some template magic is needed. It's | 
|  | // mostly hidden inside autodiff.h. | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | if (!jacobians) { | 
|  | return internal::VariadicEvaluate< | 
|  | CostFunctor, double, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> | 
|  | ::Call(*functor_, parameters, residuals); | 
|  | } | 
|  | return internal::AutoDiff<CostFunctor, double, | 
|  | N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Differentiate( | 
|  | *functor_, | 
|  | parameters, | 
|  | SizedCostFunction<kNumResiduals, | 
|  | N0, N1, N2, N3, N4, | 
|  | N5, N6, N7, N8, N9>::num_residuals(), | 
|  | residuals, | 
|  | jacobians); | 
|  | } | 
|  |  | 
|  | private: | 
|  | internal::scoped_ptr<CostFunctor> functor_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_ |