|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  |  | 
|  | #include <cstddef> | 
|  | #include <algorithm> | 
|  | #include <vector> | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/small_blas.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | BlockSparseMatrix::~BlockSparseMatrix() {} | 
|  |  | 
|  | BlockSparseMatrix::BlockSparseMatrix( | 
|  | CompressedRowBlockStructure* block_structure) | 
|  | : num_rows_(0), | 
|  | num_cols_(0), | 
|  | num_nonzeros_(0), | 
|  | values_(NULL), | 
|  | block_structure_(block_structure) { | 
|  | CHECK_NOTNULL(block_structure_.get()); | 
|  |  | 
|  | // Count the number of columns in the matrix. | 
|  | for (int i = 0; i < block_structure_->cols.size(); ++i) { | 
|  | num_cols_ += block_structure_->cols[i].size; | 
|  | } | 
|  |  | 
|  | // Count the number of non-zero entries and the number of rows in | 
|  | // the matrix. | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | int row_block_size = block_structure_->rows[i].block.size; | 
|  | num_rows_ += row_block_size; | 
|  |  | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | int col_block_id = cells[j].block_id; | 
|  | int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | num_nonzeros_ += col_block_size * row_block_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_GE(num_rows_, 0); | 
|  | CHECK_GE(num_cols_, 0); | 
|  | CHECK_GE(num_nonzeros_, 0); | 
|  | VLOG(2) << "Allocating values array with " | 
|  | << num_nonzeros_ * sizeof(double) << " bytes.";  // NOLINT | 
|  | values_.reset(new double[num_nonzeros_]); | 
|  | CHECK_NOTNULL(values_.get()); | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::SetZero() { | 
|  | fill(values_.get(), values_.get() + num_nonzeros_, 0.0); | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::RightMultiply(const double* x,  double* y) const { | 
|  | CHECK_NOTNULL(x); | 
|  | CHECK_NOTNULL(y); | 
|  |  | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | int row_block_pos = block_structure_->rows[i].block.position; | 
|  | int row_block_size = block_structure_->rows[i].block.size; | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | int col_block_id = cells[j].block_id; | 
|  | int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | int col_block_pos = block_structure_->cols[col_block_id].position; | 
|  | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | values_.get() + cells[j].position, row_block_size, col_block_size, | 
|  | x + col_block_pos, | 
|  | y + row_block_pos); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::LeftMultiply(const double* x, double* y) const { | 
|  | CHECK_NOTNULL(x); | 
|  | CHECK_NOTNULL(y); | 
|  |  | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | int row_block_pos = block_structure_->rows[i].block.position; | 
|  | int row_block_size = block_structure_->rows[i].block.size; | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | int col_block_id = cells[j].block_id; | 
|  | int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | int col_block_pos = block_structure_->cols[col_block_id].position; | 
|  | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
|  | values_.get() + cells[j].position, row_block_size, col_block_size, | 
|  | x + row_block_pos, | 
|  | y + col_block_pos); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::SquaredColumnNorm(double* x) const { | 
|  | CHECK_NOTNULL(x); | 
|  | VectorRef(x, num_cols_).setZero(); | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | int row_block_size = block_structure_->rows[i].block.size; | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | int col_block_id = cells[j].block_id; | 
|  | int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | int col_block_pos = block_structure_->cols[col_block_id].position; | 
|  | const MatrixRef m(values_.get() + cells[j].position, | 
|  | row_block_size, col_block_size); | 
|  | VectorRef(x + col_block_pos, col_block_size) += m.colwise().squaredNorm(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::ScaleColumns(const double* scale) { | 
|  | CHECK_NOTNULL(scale); | 
|  |  | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | int row_block_size = block_structure_->rows[i].block.size; | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | int col_block_id = cells[j].block_id; | 
|  | int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | int col_block_pos = block_structure_->cols[col_block_id].position; | 
|  | MatrixRef m(values_.get() + cells[j].position, | 
|  | row_block_size, col_block_size); | 
|  | m *= ConstVectorRef(scale + col_block_pos, col_block_size).asDiagonal(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { | 
|  | CHECK_NOTNULL(dense_matrix); | 
|  |  | 
|  | dense_matrix->resize(num_rows_, num_cols_); | 
|  | dense_matrix->setZero(); | 
|  | Matrix& m = *dense_matrix; | 
|  |  | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | int row_block_pos = block_structure_->rows[i].block.position; | 
|  | int row_block_size = block_structure_->rows[i].block.size; | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | int col_block_id = cells[j].block_id; | 
|  | int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | int col_block_pos = block_structure_->cols[col_block_id].position; | 
|  | int jac_pos = cells[j].position; | 
|  | m.block(row_block_pos, col_block_pos, row_block_size, col_block_size) | 
|  | += MatrixRef(values_.get() + jac_pos, row_block_size, col_block_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::ToTripletSparseMatrix( | 
|  | TripletSparseMatrix* matrix) const { | 
|  | CHECK_NOTNULL(matrix); | 
|  |  | 
|  | matrix->Reserve(num_nonzeros_); | 
|  | matrix->Resize(num_rows_, num_cols_); | 
|  | matrix->SetZero(); | 
|  |  | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | int row_block_pos = block_structure_->rows[i].block.position; | 
|  | int row_block_size = block_structure_->rows[i].block.size; | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | int col_block_id = cells[j].block_id; | 
|  | int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | int col_block_pos = block_structure_->cols[col_block_id].position; | 
|  | int jac_pos = cells[j].position; | 
|  | for (int r = 0; r < row_block_size; ++r) { | 
|  | for (int c = 0; c < col_block_size; ++c, ++jac_pos) { | 
|  | matrix->mutable_rows()[jac_pos] = row_block_pos + r; | 
|  | matrix->mutable_cols()[jac_pos] = col_block_pos + c; | 
|  | matrix->mutable_values()[jac_pos] = values_[jac_pos]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | matrix->set_num_nonzeros(num_nonzeros_); | 
|  | } | 
|  |  | 
|  | // Return a pointer to the block structure. We continue to hold | 
|  | // ownership of the object though. | 
|  | const CompressedRowBlockStructure* BlockSparseMatrix::block_structure() | 
|  | const { | 
|  | return block_structure_.get(); | 
|  | } | 
|  |  | 
|  | void BlockSparseMatrix::ToTextFile(FILE* file) const { | 
|  | CHECK_NOTNULL(file); | 
|  | for (int i = 0; i < block_structure_->rows.size(); ++i) { | 
|  | const int row_block_pos = block_structure_->rows[i].block.position; | 
|  | const int row_block_size = block_structure_->rows[i].block.size; | 
|  | const vector<Cell>& cells = block_structure_->rows[i].cells; | 
|  | for (int j = 0; j < cells.size(); ++j) { | 
|  | const int col_block_id = cells[j].block_id; | 
|  | const int col_block_size = block_structure_->cols[col_block_id].size; | 
|  | const int col_block_pos = block_structure_->cols[col_block_id].position; | 
|  | int jac_pos = cells[j].position; | 
|  | for (int r = 0; r < row_block_size; ++r) { | 
|  | for (int c = 0; c < col_block_size; ++c) { | 
|  | fprintf(file, "% 10d % 10d %17f\n", | 
|  | row_block_pos + r, | 
|  | col_block_pos + c, | 
|  | values_[jac_pos++]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |