blob: 787adf811aac633a6df370dda7ec53106b98d533 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#include "ceres/internal/autodiff.h"
#include <algorithm>
#include <iterator>
#include <random>
#include "absl/container/fixed_array.h"
#include "gtest/gtest.h"
namespace ceres::internal {
template <typename T>
inline T& RowMajorAccess(T* base, int rows, int cols, int i, int j) {
return base[cols * i + j];
}
// Do (symmetric) finite differencing using the given function object 'b' of
// type 'B' and scalar type 'T' with step size 'del'.
//
// The type B should have a signature
//
// bool operator()(T const *, T *) const;
//
// which maps a vector of parameters to a vector of outputs.
template <typename B, typename T, int M, int N>
inline bool SymmetricDiff(const B& b,
const T par[N],
T del, // step size.
T fun[M],
T jac[M * N]) { // row-major.
if (!b(par, fun)) {
return false;
}
// Temporary parameter vector.
T tmp_par[N];
for (int j = 0; j < N; ++j) {
tmp_par[j] = par[j];
}
// For each dimension, we do one forward step and one backward step in
// parameter space, and store the output vector vectors in these vectors.
T fwd_fun[M];
T bwd_fun[M];
for (int j = 0; j < N; ++j) {
// Forward step.
tmp_par[j] = par[j] + del;
if (!b(tmp_par, fwd_fun)) {
return false;
}
// Backward step.
tmp_par[j] = par[j] - del;
if (!b(tmp_par, bwd_fun)) {
return false;
}
// Symmetric differencing:
// f'(a) = (f(a + h) - f(a - h)) / (2 h)
for (int i = 0; i < M; ++i) {
RowMajorAccess(jac, M, N, i, j) =
(fwd_fun[i] - bwd_fun[i]) / (T(2) * del);
}
// Restore our temporary vector.
tmp_par[j] = par[j];
}
return true;
}
template <typename A>
inline void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) {
// Make convenient names for elements of q.
A a = q[0];
A b = q[1];
A c = q[2];
A d = q[3];
// This is not to eliminate common sub-expression, but to
// make the lines shorter so that they fit in 80 columns!
A aa = a * a;
A ab = a * b;
A ac = a * c;
A ad = a * d;
A bb = b * b;
A bc = b * c;
A bd = b * d;
A cc = c * c;
A cd = c * d;
A dd = d * d;
#define R(i, j) RowMajorAccess(R, 3, 3, (i), (j))
R(0, 0) = aa + bb - cc - dd;
R(0, 1) = A(2) * (bc - ad);
R(0, 2) = A(2) * (ac + bd); // NOLINT
R(1, 0) = A(2) * (ad + bc);
R(1, 1) = aa - bb + cc - dd;
R(1, 2) = A(2) * (cd - ab); // NOLINT
R(2, 0) = A(2) * (bd - ac);
R(2, 1) = A(2) * (ab + cd);
R(2, 2) = aa - bb - cc + dd; // NOLINT
#undef R
}
// A structure for projecting a 3x4 camera matrix and a
// homogeneous 3D point, to a 2D inhomogeneous point.
struct Projective {
// Function that takes P and X as separate vectors:
// P, X -> x
template <typename A>
bool operator()(A const P[12], A const X[4], A x[2]) const {
A PX[3];
for (int i = 0; i < 3; ++i) {
PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0] +
RowMajorAccess(P, 3, 4, i, 1) * X[1] +
RowMajorAccess(P, 3, 4, i, 2) * X[2] +
RowMajorAccess(P, 3, 4, i, 3) * X[3];
}
if (PX[2] != 0.0) {
x[0] = PX[0] / PX[2];
x[1] = PX[1] / PX[2];
return true;
}
return false;
}
// Version that takes P and X packed in one vector:
//
// (P, X) -> x
//
template <typename A>
bool operator()(A const P_X[12 + 4], A x[2]) const {
return operator()(P_X + 0, P_X + 12, x);
}
};
// Test projective camera model projector.
TEST(AutoDiff, ProjectiveCameraModel) {
double const tol = 1e-10; // floating-point tolerance.
double const del = 1e-4; // finite-difference step.
double const err = 1e-6; // finite-difference tolerance.
Projective b;
std::mt19937 prng;
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
// Make random P and X, in a single vector.
double PX[12 + 4];
std::generate(std::begin(PX), std::end(PX), [&prng, &uniform01] {
return uniform01(prng);
});
// Handy names for the P and X parts.
double* P = PX + 0;
double* X = PX + 12;
// Apply the mapping, to get image point b_x.
double b_x[2];
b(P, X, b_x);
// Use finite differencing to estimate the Jacobian.
double fd_x[2];
double fd_J[2 * (12 + 4)];
ASSERT_TRUE(
(SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del, fd_x, fd_J)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(fd_x[i], b_x[i], tol);
}
// Use automatic differentiation to compute the Jacobian.
double ad_x1[2];
double J_PX[2 * (12 + 4)];
{
double* parameters[] = {PX};
double* jacobians[] = {J_PX};
ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<12 + 4>>(
b, parameters, 2, ad_x1, jacobians)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(ad_x1[i], b_x[i], tol);
}
}
// Use automatic differentiation (again), with two arguments.
{
double ad_x2[2];
double J_P[2 * 12];
double J_X[2 * 4];
double* parameters[] = {P, X};
double* jacobians[] = {J_P, J_X};
ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<12, 4>>(
b, parameters, 2, ad_x2, jacobians)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(ad_x2[i], b_x[i], tol);
}
// Now compare the jacobians we got.
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 12 + 4; ++j) {
ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err);
}
for (int j = 0; j < 12; ++j) {
ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol);
}
for (int j = 0; j < 4; ++j) {
ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol);
}
}
}
}
// Object to implement the projection by a calibrated camera.
struct Metric {
// The mapping is
//
// q, c, X -> x = dehomg(R(q) (X - c))
//
// where q is a quaternion and c is the center of projection.
//
// This function takes three input vectors.
template <typename A>
bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const {
A R[3 * 3];
QuaternionToScaledRotation(q, R);
// Convert the quaternion mapping all the way to projective matrix.
A P[3 * 4];
// Set P(:, 1:3) = R
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
RowMajorAccess(P, 3, 4, i, j) = RowMajorAccess(R, 3, 3, i, j);
}
}
// Set P(:, 4) = - R c
for (int i = 0; i < 3; ++i) {
RowMajorAccess(P, 3, 4, i, 3) = -(RowMajorAccess(R, 3, 3, i, 0) * c[0] +
RowMajorAccess(R, 3, 3, i, 1) * c[1] +
RowMajorAccess(R, 3, 3, i, 2) * c[2]);
}
A X1[4] = {X[0], X[1], X[2], A(1)};
Projective p;
return p(P, X1, x);
}
// A version that takes a single vector.
template <typename A>
bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const {
return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x);
}
};
// This test is similar in structure to the previous one.
TEST(AutoDiff, Metric) {
double const tol = 1e-10; // floating-point tolerance.
double const del = 1e-4; // finite-difference step.
double const err = 2e-5; // finite-difference tolerance.
Metric b;
// Make random parameter vector.
double qcX[4 + 3 + 3];
std::mt19937 prng;
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
std::generate(std::begin(qcX), std::end(qcX), [&prng, &uniform01] {
return uniform01(prng);
});
// Handy names.
double* q = qcX;
double* c = qcX + 4;
double* X = qcX + 4 + 3;
// Compute projection, b_x.
double b_x[2];
ASSERT_TRUE(b(q, c, X, b_x));
// Finite differencing estimate of Jacobian.
double fd_x[2];
double fd_J[2 * (4 + 3 + 3)];
ASSERT_TRUE(
(SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del, fd_x, fd_J)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(fd_x[i], b_x[i], tol);
}
// Automatic differentiation.
double ad_x[2];
double J_q[2 * 4];
double J_c[2 * 3];
double J_X[2 * 3];
double* parameters[] = {q, c, X};
double* jacobians[] = {J_q, J_c, J_X};
ASSERT_TRUE((AutoDifferentiate<2, StaticParameterDims<4, 3, 3>>(
b, parameters, 2, ad_x, jacobians)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(ad_x[i], b_x[i], tol);
}
// Compare the pieces.
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 4; ++j) {
ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err);
}
for (int j = 0; j < 3; ++j) {
ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err);
}
for (int j = 0; j < 3; ++j) {
ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err);
}
}
}
struct VaryingResidualFunctor {
template <typename T>
bool operator()(const T x[2], T* y) const {
for (int i = 0; i < num_residuals; ++i) {
y[i] = T(i) * x[0] * x[1] * x[1];
}
return true;
}
int num_residuals;
};
TEST(AutoDiff, VaryingNumberOfResidualsForOneCostFunctorType) {
double x[2] = {1.0, 5.5};
double* parameters[] = {x};
const int kMaxResiduals = 10;
double J_x[2 * kMaxResiduals];
double residuals[kMaxResiduals];
double* jacobians[] = {J_x};
// Use a single functor, but tweak it to produce different numbers of
// residuals.
VaryingResidualFunctor functor;
for (int num_residuals = 1; num_residuals < kMaxResiduals; ++num_residuals) {
// Tweak the number of residuals to produce.
functor.num_residuals = num_residuals;
// Run autodiff with the new number of residuals.
ASSERT_TRUE((AutoDifferentiate<DYNAMIC, StaticParameterDims<2>>(
functor, parameters, num_residuals, residuals, jacobians)));
const double kTolerance = 1e-14;
for (int i = 0; i < num_residuals; ++i) {
EXPECT_NEAR(J_x[2 * i + 0], i * x[1] * x[1], kTolerance) << "i: " << i;
EXPECT_NEAR(J_x[2 * i + 1], 2 * i * x[0] * x[1], kTolerance)
<< "i: " << i;
}
}
}
struct Residual1Param {
template <typename T>
bool operator()(const T* x0, T* y) const {
y[0] = *x0;
return true;
}
};
struct Residual2Param {
template <typename T>
bool operator()(const T* x0, const T* x1, T* y) const {
y[0] = *x0 + pow(*x1, 2);
return true;
}
};
struct Residual3Param {
template <typename T>
bool operator()(const T* x0, const T* x1, const T* x2, T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3);
return true;
}
};
struct Residual4Param {
template <typename T>
bool operator()(
const T* x0, const T* x1, const T* x2, const T* x3, T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4);
return true;
}
};
struct Residual5Param {
template <typename T>
bool operator()(const T* x0,
const T* x1,
const T* x2,
const T* x3,
const T* x4,
T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5);
return true;
}
};
struct Residual6Param {
template <typename T>
bool operator()(const T* x0,
const T* x1,
const T* x2,
const T* x3,
const T* x4,
const T* x5,
T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
pow(*x5, 6);
return true;
}
};
struct Residual7Param {
template <typename T>
bool operator()(const T* x0,
const T* x1,
const T* x2,
const T* x3,
const T* x4,
const T* x5,
const T* x6,
T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
pow(*x5, 6) + pow(*x6, 7);
return true;
}
};
struct Residual8Param {
template <typename T>
bool operator()(const T* x0,
const T* x1,
const T* x2,
const T* x3,
const T* x4,
const T* x5,
const T* x6,
const T* x7,
T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8);
return true;
}
};
struct Residual9Param {
template <typename T>
bool operator()(const T* x0,
const T* x1,
const T* x2,
const T* x3,
const T* x4,
const T* x5,
const T* x6,
const T* x7,
const T* x8,
T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9);
return true;
}
};
struct Residual10Param {
template <typename T>
bool operator()(const T* x0,
const T* x1,
const T* x2,
const T* x3,
const T* x4,
const T* x5,
const T* x6,
const T* x7,
const T* x8,
const T* x9,
T* y) const {
y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9) + pow(*x9, 10);
return true;
}
};
TEST(AutoDiff, VariadicAutoDiff) {
double x[10];
double residual = 0;
double* parameters[10];
double jacobian_values[10];
double* jacobians[10];
for (int i = 0; i < 10; ++i) {
x[i] = 2.0;
parameters[i] = x + i;
jacobians[i] = jacobian_values + i;
}
{
Residual1Param functor;
int num_variables = 1;
EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual2Param functor;
int num_variables = 2;
EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual3Param functor;
int num_variables = 3;
EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual4Param functor;
int num_variables = 4;
EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual5Param functor;
int num_variables = 5;
EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual6Param functor;
int num_variables = 6;
EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual7Param functor;
int num_variables = 7;
EXPECT_TRUE((AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual8Param functor;
int num_variables = 8;
EXPECT_TRUE(
(AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual9Param functor;
int num_variables = 9;
EXPECT_TRUE(
(AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
{
Residual10Param functor;
int num_variables = 10;
EXPECT_TRUE((
AutoDifferentiate<1, StaticParameterDims<1, 1, 1, 1, 1, 1, 1, 1, 1, 1>>(
functor, parameters, 1, &residual, jacobians)));
EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
for (int i = 0; i < num_variables; ++i) {
EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
}
}
}
// This is fragile test that triggers the alignment bug on
// i686-apple-darwin10-llvm-g++-4.2 (GCC) 4.2.1. It is quite possible,
// that other combinations of operating system + compiler will
// re-arrange the operations in this test.
//
// But this is the best (and only) way we know of to trigger this
// problem for now. A more robust solution that guarantees the
// alignment of Eigen types used for automatic differentiation would
// be nice.
TEST(AutoDiff, AlignedAllocationTest) {
// This int is needed to allocate 16 bits on the stack, so that the
// next allocation is not aligned by default.
char y = 0;
// This is needed to prevent the compiler from optimizing y out of
// this function.
y += 1;
using JetT = Jet<double, 2>;
absl::FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(3);
// Need this to makes sure that x does not get optimized out.
x[0] = x[0] + JetT(1.0);
}
} // namespace ceres::internal