blob: 3740682b28d13f6a3129a34fd5499d318263acb7 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/block_random_access_sparse_matrix.h"
#include <limits>
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "ceres/internal/eigen.h"
#include "gtest/gtest.h"
namespace ceres::internal {
TEST(BlockRandomAccessSparseMatrix, GetCell) {
ContextImpl context;
constexpr int num_threads = 1;
std::vector<Block> blocks;
blocks.emplace_back(3, 0);
blocks.emplace_back(4, 3);
blocks.emplace_back(5, 7);
constexpr int num_rows = 3 + 4 + 5;
std::set<std::pair<int, int>> block_pairs;
int num_nonzeros = 0;
block_pairs.emplace(0, 0);
num_nonzeros += blocks[0].size * blocks[0].size;
block_pairs.emplace(1, 1);
num_nonzeros += blocks[1].size * blocks[1].size;
block_pairs.emplace(1, 2);
num_nonzeros += blocks[1].size * blocks[2].size;
block_pairs.emplace(0, 2);
num_nonzeros += blocks[2].size * blocks[0].size;
BlockRandomAccessSparseMatrix m(blocks, block_pairs, &context, num_threads);
EXPECT_EQ(m.num_rows(), num_rows);
EXPECT_EQ(m.num_cols(), num_rows);
for (const auto& block_pair : block_pairs) {
const int row_block_id = block_pair.first;
const int col_block_id = block_pair.second;
int row;
int col;
int row_stride;
int col_stride;
CellInfo* cell = m.GetCell(
row_block_id, col_block_id, &row, &col, &row_stride, &col_stride);
EXPECT_TRUE(cell != nullptr);
EXPECT_EQ(row, 0);
EXPECT_EQ(col, 0);
EXPECT_EQ(row_stride, blocks[row_block_id].size);
EXPECT_EQ(col_stride, blocks[col_block_id].size);
// Write into the block
MatrixRef(cell->values, row_stride, col_stride)
.block(row, col, blocks[row_block_id].size, blocks[col_block_id].size) =
(row_block_id + 1) * (col_block_id + 1) *
Matrix::Ones(blocks[row_block_id].size, blocks[col_block_id].size);
}
const BlockSparseMatrix* bsm = m.matrix();
EXPECT_EQ(bsm->num_nonzeros(), num_nonzeros);
Matrix dense;
bsm->ToDenseMatrix(&dense);
double kTolerance = 1e-14;
// (0, 0)
EXPECT_NEAR(
(dense.block(0, 0, 3, 3) - Matrix::Ones(3, 3)).norm(), 0.0, kTolerance);
// (1, 1)
EXPECT_NEAR((dense.block(3, 3, 4, 4) - 2 * 2 * Matrix::Ones(4, 4)).norm(),
0.0,
kTolerance);
// (1, 2)
EXPECT_NEAR((dense.block(3, 3 + 4, 4, 5) - 2 * 3 * Matrix::Ones(4, 5)).norm(),
0.0,
kTolerance);
// (0, 2)
EXPECT_NEAR((dense.block(0, 3 + 4, 3, 5) - 3 * 1 * Matrix::Ones(3, 5)).norm(),
0.0,
kTolerance);
// There is nothing else in the matrix besides these four blocks.
EXPECT_NEAR(
dense.norm(), sqrt(9. + 16. * 16. + 36. * 20. + 9. * 15.), kTolerance);
Vector x = Vector::Ones(dense.rows());
Vector actual_y = Vector::Zero(dense.rows());
Vector expected_y = Vector::Zero(dense.rows());
expected_y += dense.selfadjointView<Eigen::Upper>() * x;
m.SymmetricRightMultiplyAndAccumulate(x.data(), actual_y.data());
EXPECT_NEAR((expected_y - actual_y).norm(), 0.0, kTolerance)
<< "actual: " << actual_y.transpose() << "\n"
<< "expected: " << expected_y.transpose() << "matrix: \n " << dense;
}
// IntPairToInt64 is private, thus this fixture is needed to access and
// test it.
class BlockRandomAccessSparseMatrixTest : public ::testing::Test {
public:
void SetUp() final {
std::vector<Block> blocks;
blocks.emplace_back(1, 0);
std::set<std::pair<int, int>> block_pairs;
block_pairs.emplace(0, 0);
m_ = std::make_unique<BlockRandomAccessSparseMatrix>(
blocks, block_pairs, &context_, 1);
}
void CheckIntPairToInt64(int a, int b) {
int64_t value = m_->IntPairToInt64(a, b);
EXPECT_GT(value, 0) << "Overflow a = " << a << " b = " << b;
EXPECT_GT(value, a) << "Overflow a = " << a << " b = " << b;
EXPECT_GT(value, b) << "Overflow a = " << a << " b = " << b;
}
void CheckInt64ToIntPair() {
uint64_t max_rows = m_->kRowShift;
for (int row = max_rows - 10; row < max_rows; ++row) {
for (int col = 0; col < 10; ++col) {
int row_computed;
int col_computed;
m_->Int64ToIntPair(
m_->IntPairToInt64(row, col), &row_computed, &col_computed);
EXPECT_EQ(row, row_computed);
EXPECT_EQ(col, col_computed);
}
}
}
private:
ContextImpl context_;
std::unique_ptr<BlockRandomAccessSparseMatrix> m_;
};
TEST_F(BlockRandomAccessSparseMatrixTest, IntPairToInt64Overflow) {
CheckIntPairToInt64(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
}
TEST_F(BlockRandomAccessSparseMatrixTest, Int64ToIntPair) {
CheckInt64ToIntPair();
}
} // namespace ceres::internal