| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) |
| |
| #include <string> |
| |
| #include "ceres/dense_qr.h" |
| #include "ceres/internal/eigen.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| #ifndef CERES_NO_CUDA |
| |
| TEST(CUDADenseQR, InvalidOptionOnCreate) { |
| LinearSolver::Options options; |
| ContextImpl context; |
| options.context = &context; |
| std::string error; |
| EXPECT_TRUE(context.InitCuda(&error)) << error; |
| auto dense_cuda_solver = CUDADenseQR::Create(options); |
| EXPECT_EQ(dense_cuda_solver, nullptr); |
| } |
| |
| // Tests the CUDA QR solver with a simple 4x4 matrix. |
| TEST(CUDADenseQR, QR4x4Matrix) { |
| Eigen::Matrix4d A; |
| // clang-format off |
| A << 4, 12, -16, 0, |
| 12, 37, -43, 0, |
| -16, -43, 98, 0, |
| 0, 0, 0, 1; |
| // clang-format on |
| const Eigen::Vector4d b = Eigen::Vector4d::Ones(); |
| LinearSolver::Options options; |
| ContextImpl context; |
| options.context = &context; |
| std::string error; |
| EXPECT_TRUE(context.InitCuda(&error)) << error; |
| options.dense_linear_algebra_library_type = CUDA; |
| auto dense_cuda_solver = CUDADenseQR::Create(options); |
| ASSERT_NE(dense_cuda_solver, nullptr); |
| std::string error_string; |
| ASSERT_EQ( |
| dense_cuda_solver->Factorize(A.rows(), A.cols(), A.data(), &error_string), |
| LinearSolverTerminationType::SUCCESS); |
| Eigen::Vector4d x = Eigen::Vector4d::Zero(); |
| ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string), |
| LinearSolverTerminationType::SUCCESS); |
| // Empirically observed accuracy of cuSolverDN's QR solver. |
| const double kEpsilon = std::numeric_limits<double>::epsilon() * 1500; |
| const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0); |
| EXPECT_NEAR((x - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon); |
| } |
| |
| // Tests the CUDA QR solver with a simple 4x4 matrix. |
| TEST(CUDADenseQR, QR4x2Matrix) { |
| Eigen::Matrix<double, 4, 2> A; |
| // clang-format off |
| A << 4, 12, |
| 12, 37, |
| -16, -43, |
| 0, 0; |
| // clang-format on |
| |
| const std::vector<double> b(4, 1.0); |
| LinearSolver::Options options; |
| ContextImpl context; |
| options.context = &context; |
| std::string error; |
| EXPECT_TRUE(context.InitCuda(&error)) << error; |
| options.dense_linear_algebra_library_type = CUDA; |
| auto dense_cuda_solver = CUDADenseQR::Create(options); |
| ASSERT_NE(dense_cuda_solver, nullptr); |
| std::string error_string; |
| ASSERT_EQ( |
| dense_cuda_solver->Factorize(A.rows(), A.cols(), A.data(), &error_string), |
| LinearSolverTerminationType::SUCCESS); |
| std::vector<double> x(2, 0); |
| ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string), |
| LinearSolverTerminationType::SUCCESS); |
| // Empirically observed accuracy of cuSolverDN's QR solver. |
| const double kEpsilon = std::numeric_limits<double>::epsilon() * 10; |
| // Solution values computed with Octave. |
| const Eigen::Vector2d x_expected(-1.143410852713177, 0.4031007751937981); |
| EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon); |
| EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon); |
| } |
| |
| TEST(CUDADenseQR, MustFactorizeBeforeSolve) { |
| const Eigen::Vector3d b = Eigen::Vector3d::Ones(); |
| LinearSolver::Options options; |
| ContextImpl context; |
| options.context = &context; |
| std::string error; |
| EXPECT_TRUE(context.InitCuda(&error)) << error; |
| options.dense_linear_algebra_library_type = CUDA; |
| auto dense_cuda_solver = CUDADenseQR::Create(options); |
| ASSERT_NE(dense_cuda_solver, nullptr); |
| std::string error_string; |
| ASSERT_EQ(dense_cuda_solver->Solve(b.data(), nullptr, &error_string), |
| LinearSolverTerminationType::FATAL_ERROR); |
| } |
| |
| TEST(CUDADenseQR, Randomized1600x100Tests) { |
| const int kNumRows = 1600; |
| const int kNumCols = 100; |
| using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>; |
| using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>; |
| using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>; |
| |
| LinearSolver::Options options; |
| ContextImpl context; |
| options.context = &context; |
| std::string error; |
| EXPECT_TRUE(context.InitCuda(&error)) << error; |
| options.dense_linear_algebra_library_type = ceres::CUDA; |
| std::unique_ptr<DenseQR> dense_qr = CUDADenseQR::Create(options); |
| |
| const int kNumTrials = 20; |
| for (int i = 0; i < kNumTrials; ++i) { |
| LhsType lhs = LhsType::Random(kNumRows, kNumCols); |
| SolutionType x_expected = SolutionType::Random(kNumCols); |
| RhsType rhs = lhs * x_expected; |
| SolutionType x_computed = SolutionType::Zero(kNumCols); |
| // Sanity check the random matrix sizes. |
| EXPECT_EQ(lhs.rows(), kNumRows); |
| EXPECT_EQ(lhs.cols(), kNumCols); |
| EXPECT_EQ(rhs.rows(), kNumRows); |
| EXPECT_EQ(rhs.cols(), 1); |
| EXPECT_EQ(x_expected.rows(), kNumCols); |
| EXPECT_EQ(x_expected.cols(), 1); |
| EXPECT_EQ(x_computed.rows(), kNumCols); |
| EXPECT_EQ(x_computed.cols(), 1); |
| LinearSolver::Summary summary; |
| summary.termination_type = dense_qr->FactorAndSolve(kNumRows, |
| kNumCols, |
| lhs.data(), |
| rhs.data(), |
| x_computed.data(), |
| &summary.message); |
| ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); |
| ASSERT_NEAR((x_computed - x_expected).norm() / x_expected.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon() * 400); |
| } |
| } |
| #endif // CERES_NO_CUDA |
| |
| } // namespace ceres::internal |