| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #include "ceres/internal/config.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| #include <numeric> |
| |
| #include "ceres/cuda_streamed_buffer.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| TEST(CudaStreamedBufferTest, IntegerCopy) { |
| // Offsets and sizes of batches supplied to callback |
| std::vector<std::pair<int, int>> batches; |
| const int kMaxTemporaryArraySize = 16; |
| const int kInputSize = kMaxTemporaryArraySize * 7 + 3; |
| ContextImpl context; |
| std::string message; |
| ASSERT_TRUE(context.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| |
| std::vector<int> inputs(kInputSize); |
| std::vector<int> outputs(kInputSize, -1); |
| std::iota(inputs.begin(), inputs.end(), 0); |
| |
| CudaStreamedBuffer<int> streamed_buffer(&context, kMaxTemporaryArraySize); |
| streamed_buffer.CopyToGpu(inputs.data(), |
| kInputSize, |
| [&outputs, &batches](const int* device_pointer, |
| int size, |
| int offset, |
| cudaStream_t stream) { |
| batches.emplace_back(offset, size); |
| ASSERT_EQ(cudaSuccess, |
| cudaMemcpyAsync(outputs.data() + offset, |
| device_pointer, |
| sizeof(int) * size, |
| cudaMemcpyDeviceToHost, |
| stream)); |
| }); |
| // All operations in all streams should be completed when CopyToGpu returns |
| // control to the callee |
| for (int i = 0; i < ContextImpl::kNumCudaStreams; ++i) { |
| ASSERT_EQ(cudaSuccess, cudaStreamQuery(context.streams_[i])); |
| } |
| |
| // Check if every element was visited |
| for (int i = 0; i < kInputSize; ++i) { |
| ASSERT_EQ(outputs[i], i); |
| } |
| |
| // Check if there is no overlap between batches |
| std::sort(batches.begin(), batches.end()); |
| const int num_batches = batches.size(); |
| for (int i = 0; i < num_batches; ++i) { |
| const auto [begin, size] = batches[i]; |
| const int end = begin + size; |
| ASSERT_GE(begin, 0); |
| ASSERT_LT(begin, kInputSize); |
| |
| ASSERT_GT(size, 0); |
| ASSERT_LE(end, kInputSize); |
| |
| if (i + 1 == num_batches) continue; |
| ASSERT_EQ(end, batches[i + 1].first); |
| } |
| } |
| |
| TEST(CudaStreamedBufferTest, IntegerNoCopy) { |
| // Offsets and sizes of batches supplied to callback |
| std::vector<std::pair<int, int>> batches; |
| const int kMaxTemporaryArraySize = 16; |
| const int kInputSize = kMaxTemporaryArraySize * 7 + 3; |
| ContextImpl context; |
| std::string message; |
| ASSERT_TRUE(context.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| |
| int* inputs; |
| int* outputs; |
| ASSERT_EQ(cudaSuccess, |
| cudaHostAlloc( |
| &inputs, sizeof(int) * kInputSize, cudaHostAllocWriteCombined)); |
| ASSERT_EQ( |
| cudaSuccess, |
| cudaHostAlloc(&outputs, sizeof(int) * kInputSize, cudaHostAllocDefault)); |
| |
| std::fill(outputs, outputs + kInputSize, -1); |
| std::iota(inputs, inputs + kInputSize, 0); |
| |
| CudaStreamedBuffer<int> streamed_buffer(&context, kMaxTemporaryArraySize); |
| streamed_buffer.CopyToGpu(inputs, |
| kInputSize, |
| [outputs, &batches](const int* device_pointer, |
| int size, |
| int offset, |
| cudaStream_t stream) { |
| batches.emplace_back(offset, size); |
| ASSERT_EQ(cudaSuccess, |
| cudaMemcpyAsync(outputs + offset, |
| device_pointer, |
| sizeof(int) * size, |
| cudaMemcpyDeviceToHost, |
| stream)); |
| }); |
| // All operations in all streams should be completed when CopyToGpu returns |
| // control to the callee |
| for (int i = 0; i < ContextImpl::kNumCudaStreams; ++i) { |
| ASSERT_EQ(cudaSuccess, cudaStreamQuery(context.streams_[i])); |
| } |
| |
| // Check if every element was visited |
| for (int i = 0; i < kInputSize; ++i) { |
| ASSERT_EQ(outputs[i], i); |
| } |
| |
| // Check if there is no overlap between batches |
| std::sort(batches.begin(), batches.end()); |
| const int num_batches = batches.size(); |
| for (int i = 0; i < num_batches; ++i) { |
| const auto [begin, size] = batches[i]; |
| const int end = begin + size; |
| ASSERT_GE(begin, 0); |
| ASSERT_LT(begin, kInputSize); |
| |
| ASSERT_GT(size, 0); |
| ASSERT_LE(end, kInputSize); |
| |
| if (i + 1 == num_batches) continue; |
| ASSERT_EQ(end, batches[i + 1].first); |
| } |
| |
| ASSERT_EQ(cudaSuccess, cudaFreeHost(inputs)); |
| ASSERT_EQ(cudaSuccess, cudaFreeHost(outputs)); |
| } |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |