| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: strandmark@google.com (Petter Strandmark) | 
 | // | 
 | // Class for loading the data required for descibing a Fields of Experts (FoE) | 
 | // model. | 
 |  | 
 | #include "fields_of_experts.h" | 
 |  | 
 | #include <fstream> | 
 | #include <cmath> | 
 |  | 
 | #include "pgm_image.h" | 
 |  | 
 | namespace ceres { | 
 | namespace examples { | 
 |  | 
 | FieldsOfExpertsCost::FieldsOfExpertsCost(const std::vector<double>& filter) | 
 |     : filter_(filter) { | 
 |   set_num_residuals(1); | 
 |   for (int i = 0; i < filter_.size(); ++i) { | 
 |     mutable_parameter_block_sizes()->push_back(1); | 
 |   } | 
 | } | 
 |  | 
 | // This is a dot product between a the scalar parameters and a vector of filter | 
 | // coefficients. | 
 | bool FieldsOfExpertsCost::Evaluate(double const* const* parameters, | 
 |                                    double* residuals, | 
 |                                    double** jacobians) const { | 
 |   int num_variables = filter_.size(); | 
 |   residuals[0] = 0; | 
 |   for (int i = 0; i < num_variables; ++i) { | 
 |     residuals[0] += filter_[i] * parameters[i][0]; | 
 |   } | 
 |  | 
 |   if (jacobians != NULL) { | 
 |     for (int i = 0; i < num_variables; ++i) { | 
 |       if (jacobians[i] != NULL) { | 
 |         jacobians[i][0] = filter_[i]; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // This loss function builds the FoE terms and is equal to | 
 | // | 
 | //   f(x) = alpha_i * log(1 + (1/2)s) | 
 | // | 
 | void FieldsOfExpertsLoss::Evaluate(double sq_norm, double rho[3]) const { | 
 |   const double c = 0.5; | 
 |   const double sum = 1.0 + sq_norm * c; | 
 |   const double inv = 1.0 / sum; | 
 |   // 'sum' and 'inv' are always positive, assuming that 's' is. | 
 |   rho[0] = alpha_ *  log(sum); | 
 |   rho[1] = alpha_ * c * inv; | 
 |   rho[2] = - alpha_ * c * c * inv * inv; | 
 | } | 
 |  | 
 | FieldsOfExperts::FieldsOfExperts() | 
 |     :  size_(0), num_filters_(0) { | 
 | } | 
 |  | 
 | bool FieldsOfExperts::LoadFromFile(const std::string& filename) { | 
 |   std::ifstream foe_file(filename.c_str()); | 
 |   foe_file >> size_; | 
 |   foe_file >> num_filters_; | 
 |   if (size_ < 0 || num_filters_ < 0) { | 
 |     return false; | 
 |   } | 
 |   const int num_variables = NumVariables(); | 
 |  | 
 |   x_delta_indices_.resize(num_variables); | 
 |   for (int i = 0; i < num_variables; ++i) { | 
 |     foe_file >> x_delta_indices_[i]; | 
 |   } | 
 |  | 
 |   y_delta_indices_.resize(NumVariables()); | 
 |   for (int i = 0; i < num_variables; ++i) { | 
 |     foe_file >> y_delta_indices_[i]; | 
 |   } | 
 |  | 
 |   alpha_.resize(num_filters_); | 
 |   for (int i = 0; i < num_filters_; ++i) { | 
 |     foe_file >> alpha_[i]; | 
 |   } | 
 |  | 
 |   filters_.resize(num_filters_); | 
 |   for (int i = 0; i < num_filters_; ++i) { | 
 |     filters_[i].resize(num_variables); | 
 |     for (int j = 0; j < num_variables; ++j) { | 
 |       foe_file >> filters_[i][j]; | 
 |     } | 
 |   } | 
 |  | 
 |   // If any read failed, return failure. | 
 |   if (!foe_file) { | 
 |     size_ = 0; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // There cannot be anything else in the file. Try reading another number and | 
 |   // return failure if that succeeded. | 
 |   double temp; | 
 |   foe_file >> temp; | 
 |   if (foe_file) { | 
 |     size_ = 0; | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | ceres::CostFunction* FieldsOfExperts::NewCostFunction(int alpha_index) const { | 
 |   return new FieldsOfExpertsCost(filters_[alpha_index]); | 
 | } | 
 |  | 
 | ceres::LossFunction* FieldsOfExperts::NewLossFunction(int alpha_index) const { | 
 |   return new FieldsOfExpertsLoss(alpha_[alpha_index]); | 
 | } | 
 |  | 
 |  | 
 | }  // namespace examples | 
 | }  // namespace ceres |