| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // TODO(sameeragarwal): row_block_counter can perhaps be replaced by | 
 | // Chunk::start ? | 
 |  | 
 | #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_ | 
 | #define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_ | 
 |  | 
 | // Eigen has an internal threshold switching between different matrix | 
 | // multiplication algorithms. In particular for matrices larger than | 
 | // EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly | 
 | // matrix matrix product algorithm that has a higher setup cost. For | 
 | // matrix sizes close to this threshold, especially when the matrices | 
 | // are thin and long, the default choice may not be optimal. This is | 
 | // the case for us, as the default choice causes a 30% performance | 
 | // regression when we moved from Eigen2 to Eigen3. | 
 |  | 
 | #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10 | 
 |  | 
 | // This include must come before any #ifndef check on Ceres compile options. | 
 | #include "ceres/internal/port.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <map> | 
 | #include "ceres/block_random_access_matrix.h" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/fixed_array.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/invert_psd_matrix.h" | 
 | #include "ceres/map_util.h" | 
 | #include "ceres/schur_eliminator.h" | 
 | #include "ceres/scoped_thread_token.h" | 
 | #include "ceres/small_blas.h" | 
 | #include "ceres/stl_util.h" | 
 | #include "ceres/thread_token_provider.h" | 
 | #include "Eigen/Dense" | 
 | #include "glog/logging.h" | 
 |  | 
 | #ifdef CERES_USE_TBB | 
 | #include <tbb/parallel_for.h> | 
 | #include <tbb/task_arena.h> | 
 | #endif | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() { | 
 |   STLDeleteElements(&rhs_locks_); | 
 | } | 
 |  | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Init( | 
 |     int num_eliminate_blocks, | 
 |     bool assume_full_rank_ete, | 
 |     const CompressedRowBlockStructure* bs) { | 
 |   CHECK_GT(num_eliminate_blocks, 0) | 
 |       << "SchurComplementSolver cannot be initialized with " | 
 |       << "num_eliminate_blocks = 0."; | 
 |  | 
 |   num_eliminate_blocks_ = num_eliminate_blocks; | 
 |   assume_full_rank_ete_ = assume_full_rank_ete; | 
 |  | 
 |   const int num_col_blocks = bs->cols.size(); | 
 |   const int num_row_blocks = bs->rows.size(); | 
 |  | 
 |   buffer_size_ = 1; | 
 |   chunks_.clear(); | 
 |   lhs_row_layout_.clear(); | 
 |  | 
 |   int lhs_num_rows = 0; | 
 |   // Add a map object for each block in the reduced linear system | 
 |   // and build the row/column block structure of the reduced linear | 
 |   // system. | 
 |   lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_); | 
 |   for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) { | 
 |     lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows; | 
 |     lhs_num_rows += bs->cols[i].size; | 
 |   } | 
 |  | 
 |   int r = 0; | 
 |   // Iterate over the row blocks of A, and detect the chunks. The | 
 |   // matrix should already have been ordered so that all rows | 
 |   // containing the same y block are vertically contiguous. Along | 
 |   // the way also compute the amount of space each chunk will need | 
 |   // to perform the elimination. | 
 |   while (r < num_row_blocks) { | 
 |     const int chunk_block_id = bs->rows[r].cells.front().block_id; | 
 |     if (chunk_block_id >= num_eliminate_blocks_) { | 
 |       break; | 
 |     } | 
 |  | 
 |     chunks_.push_back(Chunk()); | 
 |     Chunk& chunk = chunks_.back(); | 
 |     chunk.size = 0; | 
 |     chunk.start = r; | 
 |     int buffer_size = 0; | 
 |     const int e_block_size = bs->cols[chunk_block_id].size; | 
 |  | 
 |     // Add to the chunk until the first block in the row is | 
 |     // different than the one in the first row for the chunk. | 
 |     while (r + chunk.size < num_row_blocks) { | 
 |       const CompressedRow& row = bs->rows[r + chunk.size]; | 
 |       if (row.cells.front().block_id != chunk_block_id) { | 
 |         break; | 
 |       } | 
 |  | 
 |       // Iterate over the blocks in the row, ignoring the first | 
 |       // block since it is the one to be eliminated. | 
 |       for (int c = 1; c < row.cells.size(); ++c) { | 
 |         const Cell& cell = row.cells[c]; | 
 |         if (InsertIfNotPresent( | 
 |                 &(chunk.buffer_layout), cell.block_id, buffer_size)) { | 
 |           buffer_size += e_block_size * bs->cols[cell.block_id].size; | 
 |         } | 
 |       } | 
 |  | 
 |       buffer_size_ = std::max(buffer_size, buffer_size_); | 
 |       ++chunk.size; | 
 |     } | 
 |  | 
 |     CHECK_GT(chunk.size, 0); | 
 |     r += chunk.size; | 
 |   } | 
 |   const Chunk& chunk = chunks_.back(); | 
 |  | 
 |   uneliminated_row_begins_ = chunk.start + chunk.size; | 
 |   if (num_threads_ > 1) { | 
 |     random_shuffle(chunks_.begin(), chunks_.end()); | 
 |   } | 
 |  | 
 |   buffer_.reset(new double[buffer_size_ * num_threads_]); | 
 |  | 
 |   // chunk_outer_product_buffer_ only needs to store e_block_size * | 
 |   // f_block_size, which is always less than buffer_size_, so we just | 
 |   // allocate buffer_size_ per thread. | 
 |   chunk_outer_product_buffer_.reset(new double[buffer_size_ * num_threads_]); | 
 |  | 
 |   STLDeleteElements(&rhs_locks_); | 
 |   rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_); | 
 |   for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) { | 
 |     rhs_locks_[i] = new Mutex; | 
 |   } | 
 | } | 
 |  | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | Eliminate(const BlockSparseMatrix* A, | 
 |           const double* b, | 
 |           const double* D, | 
 |           BlockRandomAccessMatrix* lhs, | 
 |           double* rhs) { | 
 |   if (lhs->num_rows() > 0) { | 
 |     lhs->SetZero(); | 
 |     VectorRef(rhs, lhs->num_rows()).setZero(); | 
 |   } | 
 |  | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |   const int num_col_blocks = bs->cols.size(); | 
 |  | 
 |   // Add the diagonal to the schur complement. | 
 |   if (D != NULL) { | 
 | #ifdef CERES_USE_OPENMP | 
 | #pragma omp parallel for num_threads(num_threads_) schedule(dynamic) | 
 | #endif // CERES_USE_OPENMP | 
 |  | 
 | #ifndef CERES_USE_TBB | 
 |     for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) { | 
 | #else | 
 |     tbb::task_arena task_arena(num_threads_); | 
 |  | 
 |     task_arena.execute([&]{ | 
 |       tbb::parallel_for(num_eliminate_blocks_, num_col_blocks, [&](int i) { | 
 | #endif // !CERES_USE_TBB | 
 |  | 
 |       const int block_id = i - num_eliminate_blocks_; | 
 |       int r, c, row_stride, col_stride; | 
 |       CellInfo* cell_info = lhs->GetCell(block_id, block_id, | 
 |                                          &r, &c, | 
 |                                          &row_stride, &col_stride); | 
 |       if (cell_info != NULL) { | 
 |         const int block_size = bs->cols[i].size; | 
 |         typename EigenTypes<Eigen::Dynamic>::ConstVectorRef | 
 |             diag(D + bs->cols[i].position, block_size); | 
 |  | 
 |         CeresMutexLock l(&cell_info->m); | 
 |         MatrixRef m(cell_info->values, row_stride, col_stride); | 
 |         m.block(r, c, block_size, block_size).diagonal() | 
 |             += diag.array().square().matrix(); | 
 |       } | 
 |     } | 
 | #ifdef CERES_USE_TBB | 
 |     ); | 
 |     }); | 
 | #endif // CERES_USE_TBB | 
 |   } | 
 |  | 
 |   ThreadTokenProvider thread_token_provider(num_threads_); | 
 |  | 
 | #ifdef CERES_USE_OPENMP | 
 |   // Eliminate y blocks one chunk at a time.  For each chunk, compute | 
 |   // the entries of the normal equations and the gradient vector block | 
 |   // corresponding to the y block and then apply Gaussian elimination | 
 |   // to them. The matrix ete stores the normal matrix corresponding to | 
 |   // the block being eliminated and array buffer_ contains the | 
 |   // non-zero blocks in the row corresponding to this y block in the | 
 |   // normal equations. This computation is done in | 
 |   // ChunkDiagonalBlockAndGradient. UpdateRhs then applies gaussian | 
 |   // elimination to the rhs of the normal equations, updating the rhs | 
 |   // of the reduced linear system by modifying rhs blocks for all the | 
 |   // z blocks that share a row block/residual term with the y | 
 |   // block. EliminateRowOuterProduct does the corresponding operation | 
 |   // for the lhs of the reduced linear system. | 
 | #pragma omp parallel for num_threads(num_threads_) schedule(dynamic) | 
 | #endif // CERES_USE_OPENMP | 
 |  | 
 | #ifndef CERES_USE_TBB | 
 |   for (int i = 0; i < chunks_.size(); ++i) { | 
 | #else | 
 |   tbb::task_arena task_arena(num_threads_); | 
 |  | 
 |   task_arena.execute([&]{ | 
 |     tbb::parallel_for(0, int(chunks_.size()), [&](int i) { | 
 | #endif // !CERES_USE_TBB | 
 |  | 
 |     const ScopedThreadToken scoped_thread_token(&thread_token_provider); | 
 |     const int thread_id = scoped_thread_token.token(); | 
 |  | 
 |     double* buffer = buffer_.get() + thread_id * buffer_size_; | 
 |     const Chunk& chunk = chunks_[i]; | 
 |     const int e_block_id = bs->rows[chunk.start].cells.front().block_id; | 
 |     const int e_block_size = bs->cols[e_block_id].size; | 
 |  | 
 |     VectorRef(buffer, buffer_size_).setZero(); | 
 |  | 
 |     typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix | 
 |         ete(e_block_size, e_block_size); | 
 |  | 
 |     if (D != NULL) { | 
 |       const typename EigenTypes<kEBlockSize>::ConstVectorRef | 
 |           diag(D + bs->cols[e_block_id].position, e_block_size); | 
 |       ete = diag.array().square().matrix().asDiagonal(); | 
 |     } else { | 
 |       ete.setZero(); | 
 |     } | 
 |  | 
 |     FixedArray<double, 8> g(e_block_size); | 
 |     typename EigenTypes<kEBlockSize>::VectorRef gref(g.get(), e_block_size); | 
 |     gref.setZero(); | 
 |  | 
 |     // We are going to be computing | 
 |     // | 
 |     //   S += F'F - F'E(E'E)^{-1}E'F | 
 |     // | 
 |     // for each Chunk. The computation is broken down into a number of | 
 |     // function calls as below. | 
 |  | 
 |     // Compute the outer product of the e_blocks with themselves (ete | 
 |     // = E'E). Compute the product of the e_blocks with the | 
 |     // corresonding f_blocks (buffer = E'F), the gradient of the terms | 
 |     // in this chunk (g) and add the outer product of the f_blocks to | 
 |     // Schur complement (S += F'F). | 
 |     ChunkDiagonalBlockAndGradient( | 
 |         chunk, A, b, chunk.start, &ete, g.get(), buffer, lhs); | 
 |  | 
 |     // Normally one wouldn't compute the inverse explicitly, but | 
 |     // e_block_size will typically be a small number like 3, in | 
 |     // which case its much faster to compute the inverse once and | 
 |     // use it to multiply other matrices/vectors instead of doing a | 
 |     // Solve call over and over again. | 
 |     typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete = | 
 |         InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete); | 
 |  | 
 |     // For the current chunk compute and update the rhs of the reduced | 
 |     // linear system. | 
 |     // | 
 |     //   rhs = F'b - F'E(E'E)^(-1) E'b | 
 |  | 
 |     FixedArray<double, 8> inverse_ete_g(e_block_size); | 
 |     MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>( | 
 |         inverse_ete.data(), | 
 |         e_block_size, | 
 |         e_block_size, | 
 |         g.get(), | 
 |         inverse_ete_g.get()); | 
 |  | 
 |     UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.get(), rhs); | 
 |  | 
 |     // S -= F'E(E'E)^{-1}E'F | 
 |     ChunkOuterProduct( | 
 |         thread_id, bs, inverse_ete, buffer, chunk.buffer_layout, lhs); | 
 |   } | 
 | #ifdef CERES_USE_TBB | 
 |   ); | 
 |   }); | 
 | #endif // CERES_USE_TBB | 
 |  | 
 |   // For rows with no e_blocks, the schur complement update reduces to | 
 |   // S += F'F. | 
 |   NoEBlockRowsUpdate(A, b,  uneliminated_row_begins_, lhs, rhs); | 
 | } | 
 |  | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | BackSubstitute(const BlockSparseMatrix* A, | 
 |                const double* b, | 
 |                const double* D, | 
 |                const double* z, | 
 |                double* y) { | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |  | 
 | #ifdef CERES_USE_OPENMP | 
 | #pragma omp parallel for num_threads(num_threads_) schedule(dynamic) | 
 | #endif // CERES_USE_OPENMP | 
 |  | 
 | #ifndef CERES_USE_TBB | 
 |   for (int i = 0; i < chunks_.size(); ++i) { | 
 | #else | 
 |   tbb::task_arena task_arena(num_threads_); | 
 |  | 
 |   task_arena.execute([&]{ | 
 |     tbb::parallel_for(0, int(chunks_.size()), [&](int i) { | 
 | #endif // !CERES_USE_TBB | 
 |  | 
 |     const Chunk& chunk = chunks_[i]; | 
 |     const int e_block_id = bs->rows[chunk.start].cells.front().block_id; | 
 |     const int e_block_size = bs->cols[e_block_id].size; | 
 |  | 
 |     double* y_ptr = y +  bs->cols[e_block_id].position; | 
 |     typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size); | 
 |  | 
 |     typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix | 
 |         ete(e_block_size, e_block_size); | 
 |     if (D != NULL) { | 
 |       const typename EigenTypes<kEBlockSize>::ConstVectorRef | 
 |           diag(D + bs->cols[e_block_id].position, e_block_size); | 
 |       ete = diag.array().square().matrix().asDiagonal(); | 
 |     } else { | 
 |       ete.setZero(); | 
 |     } | 
 |  | 
 |     const double* values = A->values(); | 
 |     for (int j = 0; j < chunk.size; ++j) { | 
 |       const CompressedRow& row = bs->rows[chunk.start + j]; | 
 |       const Cell& e_cell = row.cells.front(); | 
 |       DCHECK_EQ(e_block_id, e_cell.block_id); | 
 |  | 
 |       FixedArray<double, 8> sj(row.block.size); | 
 |  | 
 |       typename EigenTypes<kRowBlockSize>::VectorRef(sj.get(), row.block.size) = | 
 |           typename EigenTypes<kRowBlockSize>::ConstVectorRef | 
 |           (b + bs->rows[chunk.start + j].block.position, row.block.size); | 
 |  | 
 |       for (int c = 1; c < row.cells.size(); ++c) { | 
 |         const int f_block_id = row.cells[c].block_id; | 
 |         const int f_block_size = bs->cols[f_block_id].size; | 
 |         const int r_block = f_block_id - num_eliminate_blocks_; | 
 |  | 
 |         MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>( | 
 |             values + row.cells[c].position, row.block.size, f_block_size, | 
 |             z + lhs_row_layout_[r_block], | 
 |             sj.get()); | 
 |       } | 
 |  | 
 |       MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>( | 
 |           values + e_cell.position, row.block.size, e_block_size, | 
 |           sj.get(), | 
 |           y_ptr); | 
 |  | 
 |       MatrixTransposeMatrixMultiply | 
 |           <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>( | 
 |               values + e_cell.position, row.block.size, e_block_size, | 
 |               values + e_cell.position, row.block.size, e_block_size, | 
 |               ete.data(), 0, 0, e_block_size, e_block_size); | 
 |     } | 
 |  | 
 |     y_block = InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete) | 
 |         * y_block; | 
 |   } | 
 | #ifdef CERES_USE_TBB | 
 |   ); | 
 |   }); | 
 | #endif // CERES_USE_TBB | 
 | } | 
 |  | 
 | // Update the rhs of the reduced linear system. Compute | 
 | // | 
 | //   F'b - F'E(E'E)^(-1) E'b | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | UpdateRhs(const Chunk& chunk, | 
 |           const BlockSparseMatrix* A, | 
 |           const double* b, | 
 |           int row_block_counter, | 
 |           const double* inverse_ete_g, | 
 |           double* rhs) { | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |   const int e_block_id = bs->rows[chunk.start].cells.front().block_id; | 
 |   const int e_block_size = bs->cols[e_block_id].size; | 
 |  | 
 |   int b_pos = bs->rows[row_block_counter].block.position; | 
 |   const double* values = A->values(); | 
 |   for (int j = 0; j < chunk.size; ++j) { | 
 |     const CompressedRow& row = bs->rows[row_block_counter + j]; | 
 |     const Cell& e_cell = row.cells.front(); | 
 |  | 
 |     typename EigenTypes<kRowBlockSize>::Vector sj = | 
 |         typename EigenTypes<kRowBlockSize>::ConstVectorRef | 
 |         (b + b_pos, row.block.size); | 
 |  | 
 |     MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>( | 
 |         values + e_cell.position, row.block.size, e_block_size, | 
 |         inverse_ete_g, sj.data()); | 
 |  | 
 |     for (int c = 1; c < row.cells.size(); ++c) { | 
 |       const int block_id = row.cells[c].block_id; | 
 |       const int block_size = bs->cols[block_id].size; | 
 |       const int block = block_id - num_eliminate_blocks_; | 
 |       CeresMutexLock l(rhs_locks_[block]); | 
 |       MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>( | 
 |           values + row.cells[c].position, | 
 |           row.block.size, block_size, | 
 |           sj.data(), rhs + lhs_row_layout_[block]); | 
 |     } | 
 |     b_pos += row.block.size; | 
 |   } | 
 | } | 
 |  | 
 | // Given a Chunk - set of rows with the same e_block, e.g. in the | 
 | // following Chunk with two rows. | 
 | // | 
 | //                E                   F | 
 | //      [ y11   0   0   0 |  z11     0    0   0    z51] | 
 | //      [ y12   0   0   0 |  z12   z22    0   0      0] | 
 | // | 
 | // this function computes twp matrices. The diagonal block matrix | 
 | // | 
 | //   ete = y11 * y11' + y12 * y12' | 
 | // | 
 | // and the off diagonal blocks in the Guass Newton Hessian. | 
 | // | 
 | //   buffer = [y11'(z11 + z12), y12' * z22, y11' * z51] | 
 | // | 
 | // which are zero compressed versions of the block sparse matrices E'E | 
 | // and E'F. | 
 | // | 
 | // and the gradient of the e_block, E'b. | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | ChunkDiagonalBlockAndGradient( | 
 |     const Chunk& chunk, | 
 |     const BlockSparseMatrix* A, | 
 |     const double* b, | 
 |     int row_block_counter, | 
 |     typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete, | 
 |     double* g, | 
 |     double* buffer, | 
 |     BlockRandomAccessMatrix* lhs) { | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |  | 
 |   int b_pos = bs->rows[row_block_counter].block.position; | 
 |   const int e_block_size = ete->rows(); | 
 |  | 
 |   // Iterate over the rows in this chunk, for each row, compute the | 
 |   // contribution of its F blocks to the Schur complement, the | 
 |   // contribution of its E block to the matrix EE' (ete), and the | 
 |   // corresponding block in the gradient vector. | 
 |   const double* values = A->values(); | 
 |   for (int j = 0; j < chunk.size; ++j) { | 
 |     const CompressedRow& row = bs->rows[row_block_counter + j]; | 
 |  | 
 |     if (row.cells.size() > 1) { | 
 |       EBlockRowOuterProduct(A, row_block_counter + j, lhs); | 
 |     } | 
 |  | 
 |     // Extract the e_block, ETE += E_i' E_i | 
 |     const Cell& e_cell = row.cells.front(); | 
 |     MatrixTransposeMatrixMultiply | 
 |         <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>( | 
 |             values + e_cell.position, row.block.size, e_block_size, | 
 |             values + e_cell.position, row.block.size, e_block_size, | 
 |             ete->data(), 0, 0, e_block_size, e_block_size); | 
 |  | 
 |     // g += E_i' b_i | 
 |     MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>( | 
 |         values + e_cell.position, row.block.size, e_block_size, | 
 |         b + b_pos, | 
 |         g); | 
 |  | 
 |  | 
 |     // buffer = E'F. This computation is done by iterating over the | 
 |     // f_blocks for each row in the chunk. | 
 |     for (int c = 1; c < row.cells.size(); ++c) { | 
 |       const int f_block_id = row.cells[c].block_id; | 
 |       const int f_block_size = bs->cols[f_block_id].size; | 
 |       double* buffer_ptr = | 
 |           buffer +  FindOrDie(chunk.buffer_layout, f_block_id); | 
 |       MatrixTransposeMatrixMultiply | 
 |           <kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>( | 
 |           values + e_cell.position, row.block.size, e_block_size, | 
 |           values + row.cells[c].position, row.block.size, f_block_size, | 
 |           buffer_ptr, 0, 0, e_block_size, f_block_size); | 
 |     } | 
 |     b_pos += row.block.size; | 
 |   } | 
 | } | 
 |  | 
 | // Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the | 
 | // Schur complement matrix, i.e | 
 | // | 
 | //  S -= F'E(E'E)^{-1}E'F. | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | ChunkOuterProduct(int thread_id, | 
 |                   const CompressedRowBlockStructure* bs, | 
 |                   const Matrix& inverse_ete, | 
 |                   const double* buffer, | 
 |                   const BufferLayoutType& buffer_layout, | 
 |                   BlockRandomAccessMatrix* lhs) { | 
 |   // This is the most computationally expensive part of this | 
 |   // code. Profiling experiments reveal that the bottleneck is not the | 
 |   // computation of the right-hand matrix product, but memory | 
 |   // references to the left hand side. | 
 |   const int e_block_size = inverse_ete.rows(); | 
 |   BufferLayoutType::const_iterator it1 = buffer_layout.begin(); | 
 |  | 
 |   double* b1_transpose_inverse_ete = | 
 |       chunk_outer_product_buffer_.get() + thread_id * buffer_size_; | 
 |  | 
 |   // S(i,j) -= bi' * ete^{-1} b_j | 
 |   for (; it1 != buffer_layout.end(); ++it1) { | 
 |     const int block1 = it1->first - num_eliminate_blocks_; | 
 |     const int block1_size = bs->cols[it1->first].size; | 
 |     MatrixTransposeMatrixMultiply | 
 |         <kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>( | 
 |         buffer + it1->second, e_block_size, block1_size, | 
 |         inverse_ete.data(), e_block_size, e_block_size, | 
 |         b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size); | 
 |  | 
 |     BufferLayoutType::const_iterator it2 = it1; | 
 |     for (; it2 != buffer_layout.end(); ++it2) { | 
 |       const int block2 = it2->first - num_eliminate_blocks_; | 
 |  | 
 |       int r, c, row_stride, col_stride; | 
 |       CellInfo* cell_info = lhs->GetCell(block1, block2, | 
 |                                          &r, &c, | 
 |                                          &row_stride, &col_stride); | 
 |       if (cell_info != NULL) { | 
 |         const int block2_size = bs->cols[it2->first].size; | 
 |         CeresMutexLock l(&cell_info->m); | 
 |         MatrixMatrixMultiply | 
 |             <kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>( | 
 |                 b1_transpose_inverse_ete, block1_size, e_block_size, | 
 |                 buffer  + it2->second, e_block_size, block2_size, | 
 |                 cell_info->values, r, c, row_stride, col_stride); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // For rows with no e_blocks, the schur complement update reduces to S | 
 | // += F'F. This function iterates over the rows of A with no e_block, | 
 | // and calls NoEBlockRowOuterProduct on each row. | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | NoEBlockRowsUpdate(const BlockSparseMatrix* A, | 
 |                    const double* b, | 
 |                    int row_block_counter, | 
 |                    BlockRandomAccessMatrix* lhs, | 
 |                    double* rhs) { | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |   const double* values = A->values(); | 
 |   for (; row_block_counter < bs->rows.size(); ++row_block_counter) { | 
 |     const CompressedRow& row = bs->rows[row_block_counter]; | 
 |     for (int c = 0; c < row.cells.size(); ++c) { | 
 |       const int block_id = row.cells[c].block_id; | 
 |       const int block_size = bs->cols[block_id].size; | 
 |       const int block = block_id - num_eliminate_blocks_; | 
 |       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |           values + row.cells[c].position, row.block.size, block_size, | 
 |           b + row.block.position, | 
 |           rhs + lhs_row_layout_[block]); | 
 |     } | 
 |     NoEBlockRowOuterProduct(A, row_block_counter, lhs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // A row r of A, which has no e_blocks gets added to the Schur | 
 | // Complement as S += r r'. This function is responsible for computing | 
 | // the contribution of a single row r to the Schur complement. It is | 
 | // very similar in structure to EBlockRowOuterProduct except for | 
 | // one difference. It does not use any of the template | 
 | // parameters. This is because the algorithm used for detecting the | 
 | // static structure of the matrix A only pays attention to rows with | 
 | // e_blocks. This is becase rows without e_blocks are rare and | 
 | // typically arise from regularization terms in the original | 
 | // optimization problem, and have a very different structure than the | 
 | // rows with e_blocks. Including them in the static structure | 
 | // detection will lead to most template parameters being set to | 
 | // dynamic. Since the number of rows without e_blocks is small, the | 
 | // lack of templating is not an issue. | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | NoEBlockRowOuterProduct(const BlockSparseMatrix* A, | 
 |                         int row_block_index, | 
 |                         BlockRandomAccessMatrix* lhs) { | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |   const CompressedRow& row = bs->rows[row_block_index]; | 
 |   const double* values = A->values(); | 
 |   for (int i = 0; i < row.cells.size(); ++i) { | 
 |     const int block1 = row.cells[i].block_id - num_eliminate_blocks_; | 
 |     DCHECK_GE(block1, 0); | 
 |  | 
 |     const int block1_size = bs->cols[row.cells[i].block_id].size; | 
 |     int r, c, row_stride, col_stride; | 
 |     CellInfo* cell_info = lhs->GetCell(block1, block1, | 
 |                                        &r, &c, | 
 |                                        &row_stride, &col_stride); | 
 |     if (cell_info != NULL) { | 
 |       CeresMutexLock l(&cell_info->m); | 
 |       // This multiply currently ignores the fact that this is a | 
 |       // symmetric outer product. | 
 |       MatrixTransposeMatrixMultiply | 
 |           <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |               values + row.cells[i].position, row.block.size, block1_size, | 
 |               values + row.cells[i].position, row.block.size, block1_size, | 
 |               cell_info->values, r, c, row_stride, col_stride); | 
 |     } | 
 |  | 
 |     for (int j = i + 1; j < row.cells.size(); ++j) { | 
 |       const int block2 = row.cells[j].block_id - num_eliminate_blocks_; | 
 |       DCHECK_GE(block2, 0); | 
 |       DCHECK_LT(block1, block2); | 
 |       int r, c, row_stride, col_stride; | 
 |       CellInfo* cell_info = lhs->GetCell(block1, block2, | 
 |                                          &r, &c, | 
 |                                          &row_stride, &col_stride); | 
 |       if (cell_info != NULL) { | 
 |         const int block2_size = bs->cols[row.cells[j].block_id].size; | 
 |         CeresMutexLock l(&cell_info->m); | 
 |         MatrixTransposeMatrixMultiply | 
 |             <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |                 values + row.cells[i].position, row.block.size, block1_size, | 
 |                 values + row.cells[j].position, row.block.size, block2_size, | 
 |                 cell_info->values, r, c, row_stride, col_stride); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // For a row with an e_block, compute the contribition S += F'F. This | 
 | // function has the same structure as NoEBlockRowOuterProduct, except | 
 | // that this function uses the template parameters. | 
 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> | 
 | void | 
 | SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>:: | 
 | EBlockRowOuterProduct(const BlockSparseMatrix* A, | 
 |                       int row_block_index, | 
 |                       BlockRandomAccessMatrix* lhs) { | 
 |   const CompressedRowBlockStructure* bs = A->block_structure(); | 
 |   const CompressedRow& row = bs->rows[row_block_index]; | 
 |   const double* values = A->values(); | 
 |   for (int i = 1; i < row.cells.size(); ++i) { | 
 |     const int block1 = row.cells[i].block_id - num_eliminate_blocks_; | 
 |     DCHECK_GE(block1, 0); | 
 |  | 
 |     const int block1_size = bs->cols[row.cells[i].block_id].size; | 
 |     int r, c, row_stride, col_stride; | 
 |     CellInfo* cell_info = lhs->GetCell(block1, block1, | 
 |                                        &r, &c, | 
 |                                        &row_stride, &col_stride); | 
 |     if (cell_info != NULL) { | 
 |       CeresMutexLock l(&cell_info->m); | 
 |       // block += b1.transpose() * b1; | 
 |       MatrixTransposeMatrixMultiply | 
 |           <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>( | 
 |           values + row.cells[i].position, row.block.size, block1_size, | 
 |           values + row.cells[i].position, row.block.size, block1_size, | 
 |           cell_info->values, r, c, row_stride, col_stride); | 
 |     } | 
 |  | 
 |     for (int j = i + 1; j < row.cells.size(); ++j) { | 
 |       const int block2 = row.cells[j].block_id - num_eliminate_blocks_; | 
 |       DCHECK_GE(block2, 0); | 
 |       DCHECK_LT(block1, block2); | 
 |       const int block2_size = bs->cols[row.cells[j].block_id].size; | 
 |       int r, c, row_stride, col_stride; | 
 |       CellInfo* cell_info = lhs->GetCell(block1, block2, | 
 |                                          &r, &c, | 
 |                                          &row_stride, &col_stride); | 
 |       if (cell_info != NULL) { | 
 |         // block += b1.transpose() * b2; | 
 |         CeresMutexLock l(&cell_info->m); | 
 |         MatrixTransposeMatrixMultiply | 
 |             <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>( | 
 |                 values + row.cells[i].position, row.block.size, block1_size, | 
 |                 values + row.cells[j].position, row.block.size, block2_size, | 
 |                 cell_info->values, r, c, row_stride, col_stride); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_ |