| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2023 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include <memory> | 
 |  | 
 | #include "ceres/casts.h" | 
 | #include "ceres/context_impl.h" | 
 | #include "ceres/internal/config.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | using Param = ::testing:: | 
 |     tuple<LinearSolverType, DenseLinearAlgebraLibraryType, bool, int>; | 
 |  | 
 | static std::string ParamInfoToString(testing::TestParamInfo<Param> info) { | 
 |   Param param = info.param; | 
 |   std::stringstream ss; | 
 |   ss << LinearSolverTypeToString(::testing::get<0>(param)) << "_" | 
 |      << DenseLinearAlgebraLibraryTypeToString(::testing::get<1>(param)) << "_" | 
 |      << (::testing::get<2>(param) ? "Regularized" : "Unregularized") << "_" | 
 |      << ::testing::get<3>(param); | 
 |   return ss.str(); | 
 | } | 
 |  | 
 | class DenseLinearSolverTest : public ::testing::TestWithParam<Param> {}; | 
 |  | 
 | TEST_P(DenseLinearSolverTest, _) { | 
 |   Param param = GetParam(); | 
 |   const bool regularized = testing::get<2>(param); | 
 |  | 
 |   std::unique_ptr<LinearLeastSquaresProblem> problem = | 
 |       CreateLinearLeastSquaresProblemFromId(testing::get<3>(param)); | 
 |   DenseSparseMatrix lhs(*down_cast<TripletSparseMatrix*>(problem->A.get())); | 
 |  | 
 |   const int num_cols = lhs.num_cols(); | 
 |   const int num_rows = lhs.num_rows(); | 
 |  | 
 |   Vector rhs = Vector::Zero(num_rows + num_cols); | 
 |   rhs.head(num_rows) = ConstVectorRef(problem->b.get(), num_rows); | 
 |  | 
 |   LinearSolver::Options options; | 
 |   options.type = ::testing::get<0>(param); | 
 |   options.dense_linear_algebra_library_type = ::testing::get<1>(param); | 
 |   ContextImpl context; | 
 |   options.context = &context; | 
 |   std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options)); | 
 |  | 
 |   LinearSolver::PerSolveOptions per_solve_options; | 
 |   if (regularized) { | 
 |     per_solve_options.D = problem->D.get(); | 
 |   } | 
 |  | 
 |   Vector solution(num_cols); | 
 |   LinearSolver::Summary summary = | 
 |       solver->Solve(&lhs, rhs.data(), per_solve_options, solution.data()); | 
 |   EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); | 
 |  | 
 |   Vector normal_rhs = lhs.matrix().transpose() * rhs.head(num_rows); | 
 |   Matrix normal_lhs = lhs.matrix().transpose() * lhs.matrix(); | 
 |  | 
 |   if (regularized) { | 
 |     ConstVectorRef diagonal(problem->D.get(), num_cols); | 
 |     normal_lhs += diagonal.array().square().matrix().asDiagonal(); | 
 |   } | 
 |  | 
 |   Vector actual_normal_rhs = normal_lhs * solution; | 
 |  | 
 |   const double normalized_residual = | 
 |       (normal_rhs - actual_normal_rhs).norm() / normal_rhs.norm(); | 
 |  | 
 |   EXPECT_NEAR( | 
 |       normalized_residual, 0.0, 10 * std::numeric_limits<double>::epsilon()) | 
 |       << "\nexpected: " << normal_rhs.transpose() | 
 |       << "\nactual: " << actual_normal_rhs.transpose(); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // TODO(sameeragarwal): Should we move away from hard coded linear | 
 | // least squares problem to randomly generated ones? | 
 | #ifndef CERES_NO_LAPACK | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     DenseLinearSolver, | 
 |     DenseLinearSolverTest, | 
 |     ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY), | 
 |                        ::testing::Values(EIGEN, LAPACK), | 
 |                        ::testing::Values(true, false), | 
 |                        ::testing::Values(0, 1)), | 
 |     ParamInfoToString); | 
 |  | 
 | #else | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     DenseLinearSolver, | 
 |     DenseLinearSolverTest, | 
 |     ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY), | 
 |                        ::testing::Values(EIGEN), | 
 |                        ::testing::Values(true, false), | 
 |                        ::testing::Values(0, 1)), | 
 |     ParamInfoToString); | 
 |  | 
 | #endif | 
 | }  // namespace | 
 | }  // namespace ceres::internal |