| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: mierle@gmail.com (Keir Mierle) | 
 | //         sameeragarwal@google.com (Sameer Agarwal) | 
 | //         thadh@gmail.com (Thad Hughes) | 
 | // | 
 | // This numeric diff implementation differs from the one found in | 
 | // numeric_diff_cost_function.h by supporting numericdiff on cost | 
 | // functions with variable numbers of parameters with variable | 
 | // sizes. With the other implementation, all the sizes (both the | 
 | // number of parameter blocks and the size of each block) must be | 
 | // fixed at compile time. | 
 | // | 
 | // The functor API differs slightly from the API for fixed size | 
 | // numeric diff; the expected interface for the cost functors is: | 
 | // | 
 | //   struct MyCostFunctor { | 
 | //     template<typename T> | 
 | //     bool operator()(double const* const* parameters, double* residuals) const { | 
 | //       // Use parameters[i] to access the i'th parameter block. | 
 | //     } | 
 | //   } | 
 | // | 
 | // Since the sizing of the parameters is done at runtime, you must | 
 | // also specify the sizes after creating the | 
 | // DynamicNumericDiffCostFunction. For example: | 
 | // | 
 | //   DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function( | 
 | //       new MyCostFunctor()); | 
 | //   cost_function.AddParameterBlock(5); | 
 | //   cost_function.AddParameterBlock(10); | 
 | //   cost_function.SetNumResiduals(21); | 
 |  | 
 | #ifndef CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_ | 
 | #define CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_ | 
 |  | 
 | #include <cmath> | 
 | #include <numeric> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/numeric_diff.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | template <typename CostFunctor, NumericDiffMethod method = CENTRAL> | 
 | class DynamicNumericDiffCostFunction : public CostFunction { | 
 |  public: | 
 |   explicit DynamicNumericDiffCostFunction(const CostFunctor* functor, | 
 |                                           Ownership ownership = TAKE_OWNERSHIP, | 
 |                                           double relative_step_size = 1e-6) | 
 |       : functor_(functor), | 
 |         ownership_(ownership), | 
 |         relative_step_size_(relative_step_size) { | 
 |   } | 
 |  | 
 |   virtual ~DynamicNumericDiffCostFunction() { | 
 |     if (ownership_ != TAKE_OWNERSHIP) { | 
 |       functor_.release(); | 
 |     } | 
 |   } | 
 |  | 
 |   void AddParameterBlock(int size) { | 
 |     mutable_parameter_block_sizes()->push_back(size); | 
 |   } | 
 |  | 
 |   void SetNumResiduals(int num_residuals) { | 
 |     set_num_residuals(num_residuals); | 
 |   } | 
 |  | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** jacobians) const { | 
 |     CHECK_GT(num_residuals(), 0) | 
 |         << "You must call DynamicNumericDiffCostFunction::SetNumResiduals() " | 
 |         << "before DynamicNumericDiffCostFunction::Evaluate()."; | 
 |  | 
 |     const vector<int32>& block_sizes = parameter_block_sizes(); | 
 |     CHECK(!block_sizes.empty()) | 
 |         << "You must call DynamicNumericDiffCostFunction::AddParameterBlock() " | 
 |         << "before DynamicNumericDiffCostFunction::Evaluate()."; | 
 |  | 
 |     const bool status = EvaluateCostFunctor(parameters, residuals); | 
 |     if (jacobians == NULL || !status) { | 
 |       return status; | 
 |     } | 
 |  | 
 |     // Create local space for a copy of the parameters which will get mutated. | 
 |     int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0); | 
 |     vector<double> parameters_copy(parameters_size); | 
 |     vector<double*> parameters_references_copy(block_sizes.size()); | 
 |     parameters_references_copy[0] = ¶meters_copy[0]; | 
 |     for (int block = 1; block < block_sizes.size(); ++block) { | 
 |       parameters_references_copy[block] = parameters_references_copy[block - 1] | 
 |           + block_sizes[block - 1]; | 
 |     } | 
 |  | 
 |     // Copy the parameters into the local temp space. | 
 |     for (int block = 0; block < block_sizes.size(); ++block) { | 
 |       memcpy(parameters_references_copy[block], | 
 |              parameters[block], | 
 |              block_sizes[block] * sizeof(*parameters[block])); | 
 |     } | 
 |  | 
 |     for (int block = 0; block < block_sizes.size(); ++block) { | 
 |       if (jacobians[block] != NULL && | 
 |           !EvaluateJacobianForParameterBlock(block_sizes[block], | 
 |                                              block, | 
 |                                              relative_step_size_, | 
 |                                              residuals, | 
 |                                              ¶meters_references_copy[0], | 
 |                                              jacobians)) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   bool EvaluateJacobianForParameterBlock(const int parameter_block_size, | 
 |                                          const int parameter_block, | 
 |                                          const double relative_step_size, | 
 |                                          double const* residuals_at_eval_point, | 
 |                                          double** parameters, | 
 |                                          double** jacobians) const { | 
 |     using Eigen::Map; | 
 |     using Eigen::Matrix; | 
 |     using Eigen::Dynamic; | 
 |     using Eigen::RowMajor; | 
 |  | 
 |     typedef Matrix<double, Dynamic, 1> ResidualVector; | 
 |     typedef Matrix<double, Dynamic, 1> ParameterVector; | 
 |     typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix; | 
 |  | 
 |     int num_residuals = this->num_residuals(); | 
 |  | 
 |     Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block], | 
 |                                            num_residuals, | 
 |                                            parameter_block_size); | 
 |  | 
 |     // Mutate one element at a time and then restore. | 
 |     Map<ParameterVector> x_plus_delta(parameters[parameter_block], | 
 |                                       parameter_block_size); | 
 |     ParameterVector x(x_plus_delta); | 
 |     ParameterVector step_size = x.array().abs() * relative_step_size; | 
 |  | 
 |     // To handle cases where a paremeter is exactly zero, instead use | 
 |     // the mean step_size for the other dimensions. | 
 |     double fallback_step_size = step_size.sum() / step_size.rows(); | 
 |     if (fallback_step_size == 0.0) { | 
 |       // If all the parameters are zero, there's no good answer. Use the given | 
 |       // relative step_size as absolute step_size and hope for the best. | 
 |       fallback_step_size = relative_step_size; | 
 |     } | 
 |  | 
 |     // For each parameter in the parameter block, use finite | 
 |     // differences to compute the derivative for that parameter. | 
 |     for (int j = 0; j < parameter_block_size; ++j) { | 
 |       if (step_size(j) == 0.0) { | 
 |         // The parameter is exactly zero, so compromise and use the | 
 |         // mean step_size from the other parameters. This can break in | 
 |         // many cases, but it's hard to pick a good number without | 
 |         // problem specific knowledge. | 
 |         step_size(j) = fallback_step_size; | 
 |       } | 
 |       x_plus_delta(j) = x(j) + step_size(j); | 
 |  | 
 |       ResidualVector residuals(num_residuals); | 
 |       if (!EvaluateCostFunctor(parameters, &residuals[0])) { | 
 |         // Something went wrong; bail. | 
 |         return false; | 
 |       } | 
 |  | 
 |       // Compute this column of the jacobian in 3 steps: | 
 |       // 1. Store residuals for the forward part. | 
 |       // 2. Subtract residuals for the backward (or 0) part. | 
 |       // 3. Divide out the run. | 
 |       parameter_jacobian.col(j).matrix() = residuals; | 
 |  | 
 |       double one_over_h = 1 / step_size(j); | 
 |       if (method == CENTRAL) { | 
 |         // Compute the function on the other side of x(j). | 
 |         x_plus_delta(j) = x(j) - step_size(j); | 
 |  | 
 |         if (!EvaluateCostFunctor(parameters, &residuals[0])) { | 
 |           // Something went wrong; bail. | 
 |           return false; | 
 |         } | 
 |  | 
 |         parameter_jacobian.col(j) -= residuals; | 
 |         one_over_h /= 2; | 
 |       } else { | 
 |         // Forward difference only; reuse existing residuals evaluation. | 
 |         parameter_jacobian.col(j) -= | 
 |             Map<const ResidualVector>(residuals_at_eval_point, num_residuals); | 
 |       } | 
 |       x_plus_delta(j) = x(j);  // Restore x_plus_delta. | 
 |  | 
 |       // Divide out the run to get slope. | 
 |       parameter_jacobian.col(j) *= one_over_h; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool EvaluateCostFunctor(double const* const* parameters, | 
 |                            double* residuals) const { | 
 |     return EvaluateCostFunctorImpl(functor_.get(), | 
 |                                    parameters, | 
 |                                    residuals, | 
 |                                    functor_.get()); | 
 |   } | 
 |  | 
 |   // Helper templates to allow evaluation of a functor or a | 
 |   // CostFunction. | 
 |   bool EvaluateCostFunctorImpl(const CostFunctor* functor, | 
 |                                double const* const* parameters, | 
 |                                double* residuals, | 
 |                                const void* /* NOT USED */) const { | 
 |     return (*functor)(parameters, residuals); | 
 |   } | 
 |  | 
 |   bool EvaluateCostFunctorImpl(const CostFunctor* functor, | 
 |                                double const* const* parameters, | 
 |                                double* residuals, | 
 |                                const CostFunction* /* NOT USED */) const { | 
 |     return functor->Evaluate(parameters, residuals, NULL); | 
 |   } | 
 |  | 
 |   internal::scoped_ptr<const CostFunctor> functor_; | 
 |   Ownership ownership_; | 
 |   const double relative_step_size_; | 
 | }; | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_ |