| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/schur_eliminator.h" |
| |
| #include "Eigen/Dense" |
| #include "ceres/block_random_access_dense_matrix.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/casts.h" |
| #include "ceres/detect_structure.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/test_util.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| // TODO(sameeragarwal): Reduce the size of these tests and redo the |
| // parameterization to be more efficient. |
| |
| namespace ceres { |
| namespace internal { |
| |
| class SchurEliminatorTest : public ::testing::Test { |
| protected: |
| void SetUpFromId(int id) { |
| scoped_ptr<LinearLeastSquaresProblem> |
| problem(CreateLinearLeastSquaresProblemFromId(id)); |
| CHECK_NOTNULL(problem.get()); |
| SetupHelper(problem.get()); |
| } |
| |
| void SetupHelper(LinearLeastSquaresProblem* problem) { |
| A.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); |
| b.reset(problem->b.release()); |
| D.reset(problem->D.release()); |
| |
| num_eliminate_blocks = problem->num_eliminate_blocks; |
| num_eliminate_cols = 0; |
| const CompressedRowBlockStructure* bs = A->block_structure(); |
| |
| for (int i = 0; i < num_eliminate_blocks; ++i) { |
| num_eliminate_cols += bs->cols[i].size; |
| } |
| } |
| |
| // Compute the golden values for the reduced linear system and the |
| // solution to the linear least squares problem using dense linear |
| // algebra. |
| void ComputeReferenceSolution(const Vector& D) { |
| Matrix J; |
| A->ToDenseMatrix(&J); |
| VectorRef f(b.get(), J.rows()); |
| |
| Matrix H = (D.cwiseProduct(D)).asDiagonal(); |
| H.noalias() += J.transpose() * J; |
| |
| const Vector g = J.transpose() * f; |
| const int schur_size = J.cols() - num_eliminate_cols; |
| |
| lhs_expected.resize(schur_size, schur_size); |
| lhs_expected.setZero(); |
| |
| rhs_expected.resize(schur_size); |
| rhs_expected.setZero(); |
| |
| sol_expected.resize(J.cols()); |
| sol_expected.setZero(); |
| |
| Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols); |
| Matrix Q = H.block(0, |
| num_eliminate_cols, |
| num_eliminate_cols, |
| schur_size); |
| Matrix R = H.block(num_eliminate_cols, |
| num_eliminate_cols, |
| schur_size, |
| schur_size); |
| int row = 0; |
| const CompressedRowBlockStructure* bs = A->block_structure(); |
| for (int i = 0; i < num_eliminate_blocks; ++i) { |
| const int block_size = bs->cols[i].size; |
| P.block(row, row, block_size, block_size) = |
| P |
| .block(row, row, block_size, block_size) |
| .llt() |
| .solve(Matrix::Identity(block_size, block_size)); |
| row += block_size; |
| } |
| |
| lhs_expected |
| .triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q; |
| rhs_expected = |
| g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols); |
| sol_expected = H.llt().solve(g); |
| } |
| |
| void EliminateSolveAndCompare(const VectorRef& diagonal, |
| bool use_static_structure, |
| const double relative_tolerance) { |
| const CompressedRowBlockStructure* bs = A->block_structure(); |
| const int num_col_blocks = bs->cols.size(); |
| std::vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0); |
| for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) { |
| blocks[i - num_eliminate_blocks] = bs->cols[i].size; |
| } |
| |
| BlockRandomAccessDenseMatrix lhs(blocks); |
| |
| const int num_cols = A->num_cols(); |
| const int schur_size = lhs.num_rows(); |
| |
| Vector rhs(schur_size); |
| |
| LinearSolver::Options options; |
| options.elimination_groups.push_back(num_eliminate_blocks); |
| if (use_static_structure) { |
| DetectStructure(*bs, |
| num_eliminate_blocks, |
| &options.row_block_size, |
| &options.e_block_size, |
| &options.f_block_size); |
| } |
| |
| scoped_ptr<SchurEliminatorBase> eliminator; |
| eliminator.reset(SchurEliminatorBase::Create(options)); |
| eliminator->Init(num_eliminate_blocks, A->block_structure()); |
| eliminator->Eliminate(A.get(), b.get(), diagonal.data(), &lhs, rhs.data()); |
| |
| MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols()); |
| Vector reduced_sol = |
| lhs_ref |
| .selfadjointView<Eigen::Upper>() |
| .llt() |
| .solve(rhs); |
| |
| // Solution to the linear least squares problem. |
| Vector sol(num_cols); |
| sol.setZero(); |
| sol.tail(schur_size) = reduced_sol; |
| eliminator->BackSubstitute(A.get(), |
| b.get(), |
| diagonal.data(), |
| reduced_sol.data(), |
| sol.data()); |
| |
| Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>(); |
| double diff = delta.norm(); |
| EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance); |
| EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(), 0.0, |
| relative_tolerance); |
| EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(), 0.0, |
| relative_tolerance); |
| } |
| |
| scoped_ptr<BlockSparseMatrix> A; |
| scoped_array<double> b; |
| scoped_array<double> D; |
| int num_eliminate_blocks; |
| int num_eliminate_cols; |
| |
| Matrix lhs_expected; |
| Vector rhs_expected; |
| Vector sol_expected; |
| }; |
| |
| TEST_F(SchurEliminatorTest, ScalarProblem) { |
| SetUpFromId(2); |
| Vector zero(A->num_cols()); |
| zero.setZero(); |
| |
| ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols())); |
| EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14); |
| EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14); |
| |
| ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); |
| EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14); |
| EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |