| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_PUBLIC_MANIFOLD_H_ |
| #define CERES_PUBLIC_MANIFOLD_H_ |
| |
| #include <Eigen/Core> |
| #include <algorithm> |
| #include <array> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/log/check.h" |
| #include "ceres/internal/disable_warnings.h" |
| #include "ceres/internal/export.h" |
| #include "ceres/types.h" |
| |
| namespace ceres { |
| |
| // In sensor fusion problems, often we have to model quantities that live in |
| // spaces known as Manifolds, for example the rotation/orientation of a sensor |
| // that is represented by a quaternion. |
| // |
| // Manifolds are spaces which locally look like Euclidean spaces. More |
| // precisely, at each point on the manifold there is a linear space that is |
| // tangent to the manifold. It has dimension equal to the intrinsic dimension of |
| // the manifold itself, which is less than or equal to the ambient space in |
| // which the manifold is embedded. |
| // |
| // For example, the tangent space to a point on a sphere in three dimensions is |
| // the two dimensional plane that is tangent to the sphere at that point. There |
| // are two reasons tangent spaces are interesting: |
| // |
| // 1. They are Eucliean spaces so the usual vector space operations apply there, |
| // which makes numerical operations easy. |
| // 2. Movement in the tangent space translate into movements along the manifold. |
| // Movements perpendicular to the tangent space do not translate into |
| // movements on the manifold. |
| // |
| // Returning to our sphere example, moving in the 2 dimensional plane |
| // tangent to the sphere and projecting back onto the sphere will move you away |
| // from the point you started from but moving along the normal at the same point |
| // and the projecting back onto the sphere brings you back to the point. |
| // |
| // The Manifold interface defines two operations (and their derivatives) |
| // involving the tangent space, allowing filtering and optimization to be |
| // performed on said manifold: |
| // |
| // 1. x_plus_delta = Plus(x, delta) |
| // 2. delta = Minus(x_plus_delta, x) |
| // |
| // "Plus" computes the result of moving along delta in the tangent space at x, |
| // and then projecting back onto the manifold that x belongs to. In Differential |
| // Geometry this is known as a "Retraction". It is a generalization of vector |
| // addition in Euclidean spaces. |
| // |
| // Given two points on the manifold, "Minus" computes the change delta to x in |
| // the tangent space at x, that will take it to x_plus_delta. |
| // |
| // Let us now consider two examples. |
| // |
| // The Euclidean space R^n is the simplest example of a manifold. It has |
| // dimension n (and so does its tangent space) and Plus and Minus are the |
| // familiar vector sum and difference operations. |
| // |
| // Plus(x, delta) = x + delta = y, |
| // Minus(y, x) = y - x = delta. |
| // |
| // A more interesting case is SO(3), the special orthogonal group in three |
| // dimensions - the space of 3x3 rotation matrices. SO(3) is a three dimensional |
| // manifold embedded in R^9 or R^(3x3). So points on SO(3) are represented using |
| // 9 dimensional vectors or 3x3 matrices, and points in its tangent spaces are |
| // represented by 3 dimensional vectors. |
| // |
| // Defining Plus and Minus are defined in terms of the matrix Exp and Log |
| // operations as follows: |
| // |
| // Let Exp(p, q, r) = [cos(theta) + cp^2, -sr + cpq , sq + cpr ] |
| // [sr + cpq , cos(theta) + cq^2, -sp + cqr ] |
| // [-sq + cpr , sp + cqr , cos(theta) + cr^2] |
| // |
| // where: theta = sqrt(p^2 + q^2 + r^2) |
| // s = sinc(theta) |
| // c = (1 - cos(theta))/theta^2 |
| // |
| // and Log(x) = 1/(2 sinc(theta))[x_32 - x_23, x_13 - x_31, x_21 - x_12] |
| // |
| // where: theta = acos((Trace(x) - 1)/2) |
| // |
| // Then, |
| // |
| // Plus(x, delta) = x Exp(delta) |
| // Minus(y, x) = Log(x^T y) |
| // |
| // For Plus and Minus to be mathematically consistent, the following identities |
| // must be satisfied at all points x on the manifold: |
| // |
| // 1. Plus(x, 0) = x. |
| // 2. For all y, Plus(x, Minus(y, x)) = y. |
| // 3. For all delta, Minus(Plus(x, delta), x) = delta. |
| // 4. For all delta_1, delta_2 |
| // |Minus(Plus(x, delta_1), Plus(x, delta_2)) <= |delta_1 - delta_2| |
| // |
| // Briefly: |
| // (1) Ensures that the tangent space is "centered" at x, and the zero vector is |
| // the identity element. |
| // (2) Ensures that any y can be reached from x. |
| // (3) Ensures that Plus is an injective (one-to-one) map. |
| // (4) Allows us to define a metric on the manifold. |
| // |
| // Additionally we require that Plus and Minus be sufficiently smooth. In |
| // particular they need to be differentiable everywhere on the manifold. |
| // |
| // For more details, please see |
| // |
| // "Integrating Generic Sensor Fusion Algorithms with Sound State |
| // Representations through Encapsulation of Manifolds" |
| // By C. Hertzberg, R. Wagner, U. Frese and L. Schroder |
| // https://arxiv.org/pdf/1107.1119.pdf |
| class CERES_EXPORT Manifold { |
| public: |
| virtual ~Manifold(); |
| |
| // Dimension of the ambient space in which the manifold is embedded. |
| virtual int AmbientSize() const = 0; |
| |
| // Dimension of the manifold/tangent space. |
| virtual int TangentSize() const = 0; |
| |
| // x_plus_delta = Plus(x, delta), |
| // |
| // A generalization of vector addition in Euclidean space, Plus computes the |
| // result of moving along delta in the tangent space at x, and then projecting |
| // back onto the manifold that x belongs to. |
| // |
| // x and x_plus_delta are AmbientSize() vectors. |
| // delta is a TangentSize() vector. |
| // |
| // Return value indicates if the operation was successful or not. |
| virtual bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const = 0; |
| |
| // Compute the derivative of Plus(x, delta) w.r.t delta at delta = 0, i.e. |
| // |
| // (D_2 Plus)(x, 0) |
| // |
| // jacobian is a row-major AmbientSize() x TangentSize() matrix. |
| // |
| // Return value indicates whether the operation was successful or not. |
| virtual bool PlusJacobian(const double* x, double* jacobian) const = 0; |
| |
| // tangent_matrix = ambient_matrix * (D_2 Plus)(x, 0) |
| // |
| // ambient_matrix is a row-major num_rows x AmbientSize() matrix. |
| // tangent_matrix is a row-major num_rows x TangentSize() matrix. |
| // |
| // Return value indicates whether the operation was successful or not. |
| // |
| // This function is only used by the GradientProblemSolver, where the |
| // dimension of the parameter block can be large and it may be more efficient |
| // to compute this product directly rather than first evaluating the Jacobian |
| // into a matrix and then doing a matrix vector product. |
| // |
| // Because this is not an often used function, we provide a default |
| // implementation for convenience. If performance becomes an issue then the |
| // user should consider implementing a specialization. |
| virtual bool RightMultiplyByPlusJacobian(const double* x, |
| const int num_rows, |
| const double* ambient_matrix, |
| double* tangent_matrix) const; |
| |
| // y_minus_x = Minus(y, x) |
| // |
| // Given two points on the manifold, Minus computes the change to x in the |
| // tangent space at x, that will take it to y. |
| // |
| // x and y are AmbientSize() vectors. |
| // y_minus_x is a TangentSize() vector. |
| // |
| // Return value indicates if the operation was successful or not. |
| virtual bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const = 0; |
| |
| // Compute the derivative of Minus(y, x) w.r.t y at y = x, i.e. |
| // |
| // (D_1 Minus) (x, x) |
| // |
| // Jacobian is a row-major TangentSize() x AmbientSize() matrix. |
| // |
| // Return value indicates whether the operation was successful or not. |
| virtual bool MinusJacobian(const double* x, double* jacobian) const = 0; |
| }; |
| |
| // The Euclidean manifold is another name for the ordinary vector space R^size, |
| // where the plus and minus operations are the usual vector addition and |
| // subtraction: |
| // Plus(x, delta) = x + delta |
| // Minus(y, x) = y - x. |
| // |
| // The class works with dynamic and static ambient space dimensions. If the |
| // ambient space dimensions is know at compile time use |
| // |
| // EuclideanManifold<3> manifold; |
| // |
| // If the ambient space dimensions is not known at compile time the template |
| // parameter needs to be set to ceres::DYNAMIC and the actual dimension needs |
| // to be provided as a constructor argument: |
| // |
| // EuclideanManifold<ceres::DYNAMIC> manifold(ambient_dim); |
| template <int Size> |
| class EuclideanManifold final : public Manifold { |
| public: |
| static_assert(Size == ceres::DYNAMIC || Size >= 0, |
| "The size of the manifold needs to be non-negative."); |
| static_assert(ceres::DYNAMIC == Eigen::Dynamic, |
| "ceres::DYNAMIC needs to be the same as Eigen::Dynamic."); |
| |
| EuclideanManifold() : size_{Size} { |
| static_assert( |
| Size != ceres::DYNAMIC, |
| "The size is set to dynamic. Please call the constructor with a size."); |
| } |
| |
| explicit EuclideanManifold(int size) : size_(size) { |
| if (Size != ceres::DYNAMIC) { |
| CHECK_EQ(Size, size) |
| << "Specified size by template parameter differs from the supplied " |
| "one."; |
| } else { |
| CHECK_GE(size_, 0) |
| << "The size of the manifold needs to be non-negative."; |
| } |
| } |
| |
| int AmbientSize() const override { return size_; } |
| int TangentSize() const override { return size_; } |
| |
| bool Plus(const double* x_ptr, |
| const double* delta_ptr, |
| double* x_plus_delta_ptr) const override { |
| Eigen::Map<const AmbientVector> x(x_ptr, size_); |
| Eigen::Map<const AmbientVector> delta(delta_ptr, size_); |
| Eigen::Map<AmbientVector> x_plus_delta(x_plus_delta_ptr, size_); |
| x_plus_delta = x + delta; |
| return true; |
| } |
| |
| bool PlusJacobian(const double* x_ptr, double* jacobian_ptr) const override { |
| Eigen::Map<MatrixJacobian> jacobian(jacobian_ptr, size_, size_); |
| jacobian.setIdentity(); |
| return true; |
| } |
| |
| bool RightMultiplyByPlusJacobian(const double* x, |
| const int num_rows, |
| const double* ambient_matrix, |
| double* tangent_matrix) const override { |
| std::copy_n(ambient_matrix, num_rows * size_, tangent_matrix); |
| return true; |
| } |
| |
| bool Minus(const double* y_ptr, |
| const double* x_ptr, |
| double* y_minus_x_ptr) const override { |
| Eigen::Map<const AmbientVector> x(x_ptr, size_); |
| Eigen::Map<const AmbientVector> y(y_ptr, size_); |
| Eigen::Map<AmbientVector> y_minus_x(y_minus_x_ptr, size_); |
| y_minus_x = y - x; |
| return true; |
| } |
| |
| bool MinusJacobian(const double* x_ptr, double* jacobian_ptr) const override { |
| Eigen::Map<MatrixJacobian> jacobian(jacobian_ptr, size_, size_); |
| jacobian.setIdentity(); |
| return true; |
| } |
| |
| private: |
| static constexpr bool IsDynamic = (Size == ceres::DYNAMIC); |
| using AmbientVector = Eigen::Matrix<double, Size, 1>; |
| using MatrixJacobian = Eigen::Matrix<double, Size, Size, Eigen::RowMajor>; |
| |
| int size_{}; |
| }; |
| |
| // Hold a subset of the parameters inside a parameter block constant. |
| class CERES_EXPORT SubsetManifold final : public Manifold { |
| public: |
| SubsetManifold(int size, const std::vector<int>& constant_parameters); |
| int AmbientSize() const override; |
| int TangentSize() const override; |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool PlusJacobian(const double* x, double* jacobian) const override; |
| bool RightMultiplyByPlusJacobian(const double* x, |
| const int num_rows, |
| const double* ambient_matrix, |
| double* tangent_matrix) const override; |
| bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const override; |
| bool MinusJacobian(const double* x, double* jacobian) const override; |
| |
| private: |
| const int tangent_size_ = 0; |
| std::vector<bool> constancy_mask_; |
| }; |
| |
| // Implements the manifold for a Hamilton quaternion as defined in |
| // https://en.wikipedia.org/wiki/Quaternion. Quaternions are represented as |
| // unit norm 4-vectors, i.e. |
| // |
| // q = [q0; q1; q2; q3], |q| = 1 |
| // |
| // is the ambient space representation. |
| // |
| // q0 scalar part. |
| // q1 coefficient of i. |
| // q2 coefficient of j. |
| // q3 coefficient of k. |
| // |
| // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j. |
| // |
| // The tangent space is R^3, which relates to the ambient space through the |
| // Plus and Minus operations defined as: |
| // |
| // Plus(x, delta) = [cos(|delta|); sin(|delta|) * delta / |delta|] * x |
| // Minus(y, x) = to_delta(y * x^{-1}) |
| // |
| // where "*" is the quaternion product and because q is a unit quaternion |
| // (|q|=1), q^-1 = [q0; -q1; -q2; -q3] |
| // |
| // and to_delta( [q0; u_{3x1}] ) = u / |u| * atan2(|u|, q0) |
| class CERES_EXPORT QuaternionManifold final : public Manifold { |
| public: |
| int AmbientSize() const override { return 4; } |
| int TangentSize() const override { return 3; } |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool PlusJacobian(const double* x, double* jacobian) const override; |
| bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const override; |
| bool MinusJacobian(const double* x, double* jacobian) const override; |
| }; |
| |
| // Implements the quaternion manifold for Eigen's representation of the |
| // Hamilton quaternion. Geometrically it is exactly the same as the |
| // QuaternionManifold defined above. However, Eigen uses a different internal |
| // memory layout for the elements of the quaternion than what is commonly |
| // used. It stores the quaternion in memory as [q1, q2, q3, q0] or |
| // [x, y, z, w] where the real (scalar) part is last. |
| // |
| // Since Ceres operates on parameter blocks which are raw double pointers this |
| // difference is important and requires a different manifold. |
| class CERES_EXPORT EigenQuaternionManifold final : public Manifold { |
| public: |
| int AmbientSize() const override { return 4; } |
| int TangentSize() const override { return 3; } |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool PlusJacobian(const double* x, double* jacobian) const override; |
| bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const override; |
| bool MinusJacobian(const double* x, double* jacobian) const override; |
| }; |
| |
| } // namespace ceres |
| |
| // clang-format off |
| #include "ceres/internal/reenable_warnings.h" |
| // clang-format on |
| |
| #endif // CERES_PUBLIC_MANIFOLD_H_ |