| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2022 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ |
| #define CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ |
| |
| #include <memory> |
| |
| #include "ceres/internal/autodiff.h" |
| #include "ceres/manifold.h" |
| |
| namespace ceres { |
| |
| // Create a Manifold with Jacobians computed via automatic differentiation. For |
| // more information on manifolds, see include/ceres/manifold.h |
| // |
| // To get an auto differentiated manifold, you must define a class/struct with |
| // templated Plus and Minus functions that compute |
| // |
| // x_plus_delta = Plus(x, delta); |
| // y_minus_x = Minus(y, x); |
| // |
| // Where, x, y and x_plus_y are vectors on the manifold in the ambient space (so |
| // they are kAmbientSize vectors) and delta, y_minus_x are vectors in the |
| // tangent space (so they are kTangentSize vectors). |
| // |
| // The Functor should have the signature: |
| // |
| // struct Functor { |
| // template <typename T> |
| // bool Plus(const T* x, const T* delta, T* x_plus_delta) const; |
| // |
| // template <typename T> |
| // bool Minus(const T* y, const T* x, T* y_minus_x) const; |
| // }; |
| // |
| // Observe that the Plus and Minus operations are templated on the parameter T. |
| // The autodiff framework substitutes appropriate "Jet" objects for T in order |
| // to compute the derivative when necessary. This is the same mechanism that is |
| // used to compute derivatives when using AutoDiffCostFunction. |
| // |
| // Plus and Minus should return true if the computation is successful and false |
| // otherwise, in which case the result will not be used. |
| // |
| // Given this Functor, the corresponding Manifold can be constructed as: |
| // |
| // AutoDiffManifold<Functor, kAmbientSize, kTangentSize> manifold; |
| // |
| // As a concrete example consider the case of Quaternions. Quaternions form a |
| // three dimensional manifold embedded in R^4, i.e. they have an ambient |
| // dimension of 4 and their tangent space has dimension 3. The following Functor |
| // (taken from autodiff_manifold_test.cc) defines the Plus and Minus operations |
| // on the Quaternion manifold: |
| // |
| // NOTE: The following is only used for illustration purposes. Ceres Solver |
| // ships with optimized production grade QuaternionManifold implementation. See |
| // manifold.h. |
| // |
| // This functor assumes that the quaternions are laid out as [w,x,y,z] in |
| // memory, i.e. the real or scalar part is the first coordinate. |
| // |
| // struct QuaternionFunctor { |
| // template <typename T> |
| // bool Plus(const T* x, const T* delta, T* x_plus_delta) const { |
| // const T squared_norm_delta = |
| // delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; |
| // |
| // T q_delta[4]; |
| // if (squared_norm_delta > T(0.0)) { |
| // T norm_delta = sqrt(squared_norm_delta); |
| // const T sin_delta_by_delta = sin(norm_delta) / norm_delta; |
| // q_delta[0] = cos(norm_delta); |
| // q_delta[1] = sin_delta_by_delta * delta[0]; |
| // q_delta[2] = sin_delta_by_delta * delta[1]; |
| // q_delta[3] = sin_delta_by_delta * delta[2]; |
| // } else { |
| // // We do not just use q_delta = [1,0,0,0] here because that is a |
| // // constant and when used for automatic differentiation will |
| // // lead to a zero derivative. Instead we take a first order |
| // // approximation and evaluate it at zero. |
| // q_delta[0] = T(1.0); |
| // q_delta[1] = delta[0]; |
| // q_delta[2] = delta[1]; |
| // q_delta[3] = delta[2]; |
| // } |
| // |
| // QuaternionProduct(q_delta, x, x_plus_delta); |
| // return true; |
| // } |
| // |
| // template <typename T> |
| // bool Minus(const T* y, const T* x, T* y_minus_x) const { |
| // T minus_x[4] = {x[0], -x[1], -x[2], -x[3]}; |
| // T ambient_y_minus_x[4]; |
| // QuaternionProduct(y, minus_x, ambient_y_minus_x); |
| // T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] + |
| // ambient_y_minus_x[2] * ambient_y_minus_x[2] + |
| // ambient_y_minus_x[3] * ambient_y_minus_x[3]); |
| // if (u_norm > 0.0) { |
| // T theta = atan2(u_norm, ambient_y_minus_x[0]); |
| // y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm; |
| // y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm; |
| // y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm; |
| // } else { |
| // // We do not use [0,0,0] here because even though the value part is |
| // // a constant, the derivative part is not. |
| // y_minus_x[0] = ambient_y_minus_x[1]; |
| // y_minus_x[1] = ambient_y_minus_x[2]; |
| // y_minus_x[2] = ambient_y_minus_x[3]; |
| // } |
| // return true; |
| // } |
| // }; |
| // |
| // Then given this struct, the auto differentiated Quaternion Manifold can now |
| // be constructed as |
| // |
| // Manifold* manifold = new AutoDiffManifold<QuaternionFunctor, 4, 3>; |
| |
| template <typename Functor, int kAmbientSize, int kTangentSize> |
| class AutoDiffManifold final : public Manifold { |
| public: |
| AutoDiffManifold() : functor_(std::make_unique<Functor>()) {} |
| |
| // Takes ownership of functor. |
| explicit AutoDiffManifold(Functor* functor) : functor_(functor) {} |
| |
| int AmbientSize() const override { return kAmbientSize; } |
| int TangentSize() const override { return kTangentSize; } |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override { |
| return functor_->Plus(x, delta, x_plus_delta); |
| } |
| |
| bool PlusJacobian(const double* x, double* jacobian) const override; |
| |
| bool Minus(const double* y, |
| const double* x, |
| double* y_minus_x) const override { |
| return functor_->Minus(y, x, y_minus_x); |
| } |
| |
| bool MinusJacobian(const double* x, double* jacobian) const override; |
| |
| const Functor& functor() const { return *functor_; } |
| |
| private: |
| std::unique_ptr<Functor> functor_; |
| }; |
| |
| namespace internal { |
| |
| // The following two helper structs are needed to interface the Plus and Minus |
| // methods of the ManifoldFunctor with the automatic differentiation which |
| // expects a Functor with operator(). |
| template <typename Functor> |
| struct PlusWrapper { |
| explicit PlusWrapper(const Functor& functor) : functor(functor) {} |
| template <typename T> |
| bool operator()(const T* x, const T* delta, T* x_plus_delta) const { |
| return functor.Plus(x, delta, x_plus_delta); |
| } |
| const Functor& functor; |
| }; |
| |
| template <typename Functor> |
| struct MinusWrapper { |
| explicit MinusWrapper(const Functor& functor) : functor(functor) {} |
| template <typename T> |
| bool operator()(const T* y, const T* x, T* y_minus_x) const { |
| return functor.Minus(y, x, y_minus_x); |
| } |
| const Functor& functor; |
| }; |
| } // namespace internal |
| |
| template <typename Functor, int kAmbientSize, int kTangentSize> |
| bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::PlusJacobian( |
| const double* x, double* jacobian) const { |
| double zero_delta[kTangentSize]; |
| for (int i = 0; i < kTangentSize; ++i) { |
| zero_delta[i] = 0.0; |
| } |
| |
| double x_plus_delta[kAmbientSize]; |
| for (int i = 0; i < kAmbientSize; ++i) { |
| x_plus_delta[i] = 0.0; |
| } |
| |
| const double* parameter_ptrs[2] = {x, zero_delta}; |
| |
| // PlusJacobian is D_2 Plus(x,0) so we only need to compute the Jacobian |
| // w.r.t. the second argument. |
| double* jacobian_ptrs[2] = {nullptr, jacobian}; |
| return internal::AutoDifferentiate< |
| kAmbientSize, |
| internal::StaticParameterDims<kAmbientSize, kTangentSize>>( |
| internal::PlusWrapper<Functor>(*functor_), |
| parameter_ptrs, |
| kAmbientSize, |
| x_plus_delta, |
| jacobian_ptrs); |
| } |
| |
| template <typename Functor, int kAmbientSize, int kTangentSize> |
| bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::MinusJacobian( |
| const double* x, double* jacobian) const { |
| double y_minus_x[kTangentSize]; |
| for (int i = 0; i < kTangentSize; ++i) { |
| y_minus_x[i] = 0.0; |
| } |
| |
| const double* parameter_ptrs[2] = {x, x}; |
| |
| // MinusJacobian is D_1 Minus(x,x), so we only need to compute the Jacobian |
| // w.r.t. the first argument. |
| double* jacobian_ptrs[2] = {jacobian, nullptr}; |
| return internal::AutoDifferentiate< |
| kTangentSize, |
| internal::StaticParameterDims<kAmbientSize, kAmbientSize>>( |
| internal::MinusWrapper<Functor>(*functor_), |
| parameter_ptrs, |
| kTangentSize, |
| y_minus_x, |
| jacobian_ptrs); |
| } |
| |
| } // namespace ceres |
| |
| #endif // CERES_PUBLIC_AUTODIFF_MANIFOLD_H_ |