| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2019 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_ |
| #define CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_ |
| |
| #include <array> |
| #include <memory> |
| #include <vector> |
| |
| #include "ceres/internal/disable_warnings.h" |
| #include "ceres/internal/export.h" |
| #include "ceres/internal/port.h" |
| |
| namespace ceres { |
| |
| // WARNING: LocalParameterizations are deprecated. They will be removed from |
| // Ceres Solver in version 2.2.0. Please use Manifolds instead. |
| |
| // Purpose: Sometimes parameter blocks x can overparameterize a problem |
| // |
| // min f(x) |
| // x |
| // |
| // In that case it is desirable to choose a parameterization for the |
| // block itself to remove the null directions of the cost. More |
| // generally, if x lies on a manifold of a smaller dimension than the |
| // ambient space that it is embedded in, then it is numerically and |
| // computationally more effective to optimize it using a |
| // parameterization that lives in the tangent space of that manifold |
| // at each point. |
| // |
| // For example, a sphere in three dimensions is a 2 dimensional |
| // manifold, embedded in a three dimensional space. At each point on |
| // the sphere, the plane tangent to it defines a two dimensional |
| // tangent space. For a cost function defined on this sphere, given a |
| // point x, moving in the direction normal to the sphere at that point |
| // is not useful. Thus a better way to do a local optimization is to |
| // optimize over two dimensional vector delta in the tangent space at |
| // that point and then "move" to the point x + delta, where the move |
| // operation involves projecting back onto the sphere. Doing so |
| // removes a redundant dimension from the optimization, making it |
| // numerically more robust and efficient. |
| // |
| // More generally we can define a function |
| // |
| // x_plus_delta = Plus(x, delta), |
| // |
| // where x_plus_delta has the same size as x, and delta is of size |
| // less than or equal to x. The function Plus, generalizes the |
| // definition of vector addition. Thus it satisfies the identify |
| // |
| // Plus(x, 0) = x, for all x. |
| // |
| // A trivial version of Plus is when delta is of the same size as x |
| // and |
| // |
| // Plus(x, delta) = x + delta |
| // |
| // A more interesting case if x is two dimensional vector, and the |
| // user wishes to hold the first coordinate constant. Then, delta is a |
| // scalar and Plus is defined as |
| // |
| // Plus(x, delta) = x + [0] * delta |
| // [1] |
| // |
| // An example that occurs commonly in Structure from Motion problems |
| // is when camera rotations are parameterized using Quaternion. There, |
| // it is useful to only make updates orthogonal to that 4-vector |
| // defining the quaternion. One way to do this is to let delta be a 3 |
| // dimensional vector and define Plus to be |
| // |
| // Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x |
| // |
| // The multiplication between the two 4-vectors on the RHS is the |
| // standard quaternion product. |
| // |
| // Given f and a point x, optimizing f can now be restated as |
| // |
| // min f(Plus(x, delta)) |
| // delta |
| // |
| // Given a solution delta to this problem, the optimal value is then |
| // given by |
| // |
| // x* = Plus(x, delta) |
| // |
| // The class LocalParameterization defines the function Plus and its |
| // Jacobian which is needed to compute the Jacobian of f w.r.t delta. |
| class CERES_DEPRECATED_WITH_MSG( |
| "LocalParameterizations will be removed from the Ceres Solver API in " |
| "version 2.2.0. Use Manifolds instead.") |
| CERES_EXPORT LocalParameterization { |
| public: |
| virtual ~LocalParameterization(); |
| |
| // Generalization of the addition operation, |
| // |
| // x_plus_delta = Plus(x, delta) |
| // |
| // with the condition that Plus(x, 0) = x. |
| // |
| virtual bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const = 0; |
| |
| // The jacobian of Plus(x, delta) w.r.t delta at delta = 0. |
| // |
| // jacobian is a row-major GlobalSize() x LocalSize() matrix. |
| virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0; |
| |
| // local_matrix = global_matrix * jacobian |
| // |
| // global_matrix is a num_rows x GlobalSize row major matrix. |
| // local_matrix is a num_rows x LocalSize row major matrix. |
| // jacobian(x) is the matrix returned by ComputeJacobian at x. |
| // |
| // This is only used by GradientProblem. For most normal uses, it is |
| // okay to use the default implementation. |
| virtual bool MultiplyByJacobian(const double* x, |
| const int num_rows, |
| const double* global_matrix, |
| double* local_matrix) const; |
| |
| // Size of x. |
| virtual int GlobalSize() const = 0; |
| |
| // Size of delta. |
| virtual int LocalSize() const = 0; |
| }; |
| |
| // Some basic parameterizations |
| |
| // Identity Parameterization: Plus(x, delta) = x + delta |
| class CERES_DEPRECATED_WITH_MSG("Use EuclideanManifold instead.") |
| CERES_EXPORT IdentityParameterization : public LocalParameterization { |
| public: |
| explicit IdentityParameterization(int size); |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool ComputeJacobian(const double* x, double* jacobian) const override; |
| bool MultiplyByJacobian(const double* x, |
| const int num_cols, |
| const double* global_matrix, |
| double* local_matrix) const override; |
| int GlobalSize() const override { return size_; } |
| int LocalSize() const override { return size_; } |
| |
| private: |
| const int size_; |
| }; |
| |
| // Hold a subset of the parameters inside a parameter block constant. |
| class CERES_DEPRECATED_WITH_MSG("Use SubsetManifold instead.") |
| CERES_EXPORT SubsetParameterization : public LocalParameterization { |
| public: |
| explicit SubsetParameterization(int size, |
| const std::vector<int>& constant_parameters); |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool ComputeJacobian(const double* x, double* jacobian) const override; |
| bool MultiplyByJacobian(const double* x, |
| const int num_cols, |
| const double* global_matrix, |
| double* local_matrix) const override; |
| int GlobalSize() const override { |
| return static_cast<int>(constancy_mask_.size()); |
| } |
| int LocalSize() const override { return local_size_; } |
| |
| private: |
| const int local_size_; |
| std::vector<char> constancy_mask_; |
| }; |
| |
| // Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x |
| // with * being the quaternion multiplication operator. Here we assume |
| // that the first element of the quaternion vector is the real (cos |
| // theta) part. |
| class CERES_DEPRECATED_WITH_MSG("Use QuaternionManifold instead.") |
| CERES_EXPORT QuaternionParameterization : public LocalParameterization { |
| public: |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool ComputeJacobian(const double* x, double* jacobian) const override; |
| int GlobalSize() const override { return 4; } |
| int LocalSize() const override { return 3; } |
| }; |
| |
| // Implements the quaternion local parameterization for Eigen's representation |
| // of the quaternion. Eigen uses a different internal memory layout for the |
| // elements of the quaternion than what is commonly used. Specifically, Eigen |
| // stores the elements in memory as [x, y, z, w] where the real part is last |
| // whereas it is typically stored first. Note, when creating an Eigen quaternion |
| // through the constructor the elements are accepted in w, x, y, z order. Since |
| // Ceres operates on parameter blocks which are raw double pointers this |
| // difference is important and requires a different parameterization. |
| // |
| // Plus(x, delta) = [sin(|delta|) delta / |delta|, cos(|delta|)] * x |
| // with * being the quaternion multiplication operator. |
| class CERES_DEPRECATED_WITH_MSG("Use EigenQuaternionManifold instead.") |
| CERES_EXPORT EigenQuaternionParameterization |
| : public ceres::LocalParameterization { |
| public: |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool ComputeJacobian(const double* x, double* jacobian) const override; |
| int GlobalSize() const override { return 4; } |
| int LocalSize() const override { return 3; } |
| }; |
| |
| // This provides a parameterization for homogeneous vectors which are commonly |
| // used in Structure from Motion problems. One example where they are used is |
| // in representing points whose triangulation is ill-conditioned. Here it is |
| // advantageous to use an over-parameterization since homogeneous vectors can |
| // represent points at infinity. |
| // |
| // The plus operator is defined as |
| // Plus(x, delta) = |
| // [sin(0.5 * |delta|) * delta / |delta|, cos(0.5 * |delta|)] * x |
| // |
| // with * defined as an operator which applies the update orthogonal to x to |
| // remain on the sphere. We assume that the last element of x is the scalar |
| // component. The size of the homogeneous vector is required to be greater than |
| // 1. |
| class CERES_DEPRECATED_WITH_MSG("Use SphereManifold instead.") CERES_EXPORT |
| HomogeneousVectorParameterization : public LocalParameterization { |
| public: |
| explicit HomogeneousVectorParameterization(int size); |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool ComputeJacobian(const double* x, double* jacobian) const override; |
| int GlobalSize() const override { return size_; } |
| int LocalSize() const override { return size_ - 1; } |
| |
| private: |
| const int size_; |
| }; |
| |
| // This provides a parameterization for lines, where the line is |
| // over-parameterized by an origin point and a direction vector. So the |
| // parameter vector size needs to be two times the ambient space dimension, |
| // where the first half is interpreted as the origin point and the second half |
| // as the direction. |
| // |
| // The plus operator for the line direction is the same as for the |
| // HomogeneousVectorParameterization. The update of the origin point is |
| // perpendicular to the line direction before the update. |
| // |
| // This local parameterization is a special case of the affine Grassmannian |
| // manifold (see https://en.wikipedia.org/wiki/Affine_Grassmannian_(manifold)) |
| // for the case Graff_1(R^n). |
| template <int AmbientSpaceDimension> |
| class CERES_DEPRECATED_WITH_MSG("Use LineManifold instead.") |
| LineParameterization : public LocalParameterization { |
| public: |
| static_assert(AmbientSpaceDimension >= 2, |
| "The ambient space must be at least 2"); |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool ComputeJacobian(const double* x, double* jacobian) const override; |
| int GlobalSize() const override { return 2 * AmbientSpaceDimension; } |
| int LocalSize() const override { return 2 * (AmbientSpaceDimension - 1); } |
| }; |
| |
| // Construct a local parameterization by taking the Cartesian product |
| // of a number of other local parameterizations. This is useful, when |
| // a parameter block is the cartesian product of two or more |
| // manifolds. For example the parameters of a camera consist of a |
| // rotation and a translation, i.e., SO(3) x R^3. |
| // |
| // Example usage: |
| // |
| // ProductParameterization product_param(new QuaterionionParameterization(), |
| // new IdentityParameterization(3)); |
| // |
| // is the local parameterization for a rigid transformation, where the |
| // rotation is represented using a quaternion. |
| // |
| class CERES_DEPRECATED_WITH_MSG("Use ProductManifold instead.") |
| CERES_EXPORT ProductParameterization : public LocalParameterization { |
| public: |
| ProductParameterization(const ProductParameterization&) = delete; |
| ProductParameterization& operator=(const ProductParameterization&) = delete; |
| // |
| // NOTE: The constructor takes ownership of the input local |
| // parameterizations. |
| // |
| template <typename... LocalParams> |
| explicit ProductParameterization(LocalParams*... local_params) |
| : local_params_(sizeof...(LocalParams)) { |
| constexpr int kNumLocalParams = sizeof...(LocalParams); |
| static_assert(kNumLocalParams >= 2, |
| "At least two local parameterizations must be specified."); |
| |
| using LocalParameterizationPtr = std::unique_ptr<LocalParameterization>; |
| |
| // Wrap all raw pointers into std::unique_ptr for exception safety. |
| std::array<LocalParameterizationPtr, kNumLocalParams> local_params_array{ |
| LocalParameterizationPtr(local_params)...}; |
| |
| // Initialize internal state. |
| for (int i = 0; i < kNumLocalParams; ++i) { |
| LocalParameterizationPtr& param = local_params_[i]; |
| param = std::move(local_params_array[i]); |
| |
| buffer_size_ = |
| std::max(buffer_size_, param->LocalSize() * param->GlobalSize()); |
| global_size_ += param->GlobalSize(); |
| local_size_ += param->LocalSize(); |
| } |
| } |
| |
| bool Plus(const double* x, |
| const double* delta, |
| double* x_plus_delta) const override; |
| bool ComputeJacobian(const double* x, double* jacobian) const override; |
| int GlobalSize() const override { return global_size_; } |
| int LocalSize() const override { return local_size_; } |
| |
| private: |
| std::vector<std::unique_ptr<LocalParameterization>> local_params_; |
| int local_size_{0}; |
| int global_size_{0}; |
| int buffer_size_{0}; |
| }; |
| |
| } // namespace ceres |
| |
| // clang-format off |
| #include "ceres/internal/reenable_warnings.h" |
| // clang-format on |
| |
| #include "ceres/internal/line_parameterization.h" |
| |
| #endif // CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_ |